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Laser-driven plasma-based accelerators, which are capable of supporting fields in excess of
100 GV/m, are reviewed. This includes the laser wakefield accelerator, the plasma beat wave
accelerator, the self-modulated laser wakefield accelerator, plasma waves driven by multiple laser
pulses, and highly nonlinear regimes. The properties of linear and nonlinear plasma waves are
discussed, as well as electron acceleration in plasma waves. Methods for injecting and trapping plasma
electrons in plasma waves are also discussed. Limits to the electron energy gain are summarized,
including laser pulse diffraction, electron dephasing, laser pulse energy depletion, and beam loading
limitations. The basic physics of laser pulse evolution in underdense plasmas is also reviewed. This
includes the propagation, self-focusing, and guiding of laser pulses in uniform plasmas and with
preformed density channels. Instabilities relevant to intense short-pulse laser-plasma interactions,
such as Raman, self-modulation, and hose instabilities, are discussed. Experiments demonstrating key
physics, such as the production of high-quality electron bunches at energies of 0.1–1 GeV, are
summarized.
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I. INTRODUCTION

Laser-driven plasma-based accelerators were origi-
nally proposed three decades ago by Tajima and Daw-
son �1979�. Dawson, who passed away in 2001, was re-
sponsible for many of the early developments in this
field, including the plasma beat wave accelerator, the la-
ser wakefield accelerator, and the photon accelerator
�Tajima and Dawson, 1979; Joshi et al., 1984; Wilks et al.,
1989�. In addition, he was one of the early pioneers of
particle-in-cell �PIC� simulation of plasmas �Dawson,
1983; Mori et al., 1988; Birdsall et al., 1991�, which is now
a widely used tool in the study of plasma-based accelera-
tors. During his lifetime, the field of plasma-based accel-
erators has grown into a world-wide research effort with
ongoing experimental programs in France, Germany,
Korea, Japan, Taiwan, the UK, and the United States, to
name a few �see, e.g., Schroeder et al., 2009�. Much of
this growth is due to the rapid development of chirped-
pulse amplification �CPA� laser technology, pioneered
by Mourou and colleagues �Strickland and Mourou,
1985; Maine et al., 1988; Mourou and Umstadter, 1992;
Perry and Mourou, 1994�, making readily available com-
pact sources of intense, high-power, ultrashort laser
pulses.

http://dx.doi.org/10.1103/RevModPhys.81.1229


Laser-plasma accelerator �LPA� experiments prior
to 2004 have demonstrated acceleration gradients
�100 GV/m, accelerated electron energies �100 MeV,
and accelerated charge �1 nC �Modena et al., 1995; Na-
kajima et al., 1995; Umstadter, Chen, et al., 1996; Ting et
al., 1997; Gahn et al., 1999; Leemans et al., 2002; Malka
et al., 2002�. However, the quality of the accelerated
electron bunch was less than desired. Typically, the ac-
celerated bunch was characterized by an exponential en-
ergy distribution, with most of the electrons at low en-
ergy ��10 MeV� and a long exponentially small tail
extending out to high energy ��100 MeV�. This dra-
matically changed in 2004 when three groups �Faure et
al., 2004; Geddes et al., 2004; Mangles et al., 2004� re-
ported the production of high-quality electron bunches
characterized by significant charge ��100 pC� at high
mean energy ��100 MeV� with small energy spread �ap-
proximately few percent� and low divergence �approxi-
mately a few milliradians�. These high-quality electron
bunches were a result of a higher degree of control of
the laser and plasma parameters, an improvement of di-
agnostic techniques, an extension of the laser propaga-
tion distance through the plasma, and a greater under-
standing of the underlying physics, in particular, the
importance of matching the acceleration length to the
dephasing length. Using a plasma-channel-guided laser,
high-quality electron bunches up to 1 GeV have been
experimentally demonstrated �Leemans, Nagler, et al.,
2006�. Methods for controlled injection of electrons into
plasma wakefields using colliding laser pulses have also
been demonstrated �Faure, Rechatin, et al., 2006�, as
well as production of stable bunches using negative
plasma density gradients �Geddes et al., 2008�. High-
quality GeV-class electron bunches will enable a variety
of applications of LPAs, such as front-end injectors for
conventional accelerators and drivers for compact,
short-pulse radiation sources.

This review provides an overview of the physics and
issues relevant to LPAs, in which charged particles are
accelerated by plasma waves excited by short-pulse,
high-intensity lasers. The remainder of the Introduction
discusses a few of the basic features of plasma accelera-
tors and the basic principles and limitations of laser-
driven acceleration in vacuum and gases. Section II dis-
cusses the basic models used to describe plasma wave
generation. Included is a discussion of nonlinear plasma
waves, wave breaking, plasma wave phase velocity, and
the acceleration of electrons by the plasma wave. Sec-
tion III describes the various LPA configurations, spe-
cifically the laser wakefield accelerator �LWFA�, the
plasma beat wave accelerator �PBWA�, the self-
modulated LWFA, wakefields driven by multiple pulses,
and the highly nonlinear regime of electron cavitation.
Some of these configurations are shown schematically in
Fig. 1. Included is a discussion of diffraction, dephasing,
pump depletion, and beam loading, which can limit the
single-stage energy gain. Self-trapping and the injection
of ultrashort electron bunches into plasma waves using
laser triggered injection or density gradients are dis-
cussed in Sec. IV. Methods for optically guiding laser

pulses in plasmas are discussed in Sec. V, including rela-
tivistic self-focusing, preformed density channels, pon-
deromotive self-channel, and plasma wave effects. Sec-
tion VI describes a few of the more relevant laser-
plasma instabilities, including backward and forward
Raman scattering, self-modulation, and laser hosing.
Section VII discusses several methods for producing
high-quality electron bunches. Throughout this review
experimental results are mentioned. A summary is pre-
sented in Sec. VIII, as well as a discussion of future
prospects for LPAs.

A. Acceleration in plasma

Plasma-based accelerators are of great interest be-
cause of their ability to sustain extremely large accelera-
tion gradients. The accelerating gradients in conven-
tional radio-frequency �rf� linear accelerators �linacs� are
currently limited to �100 MV/m, partly due to break-
down that occurs on the walls of the structure. Ionized
plasmas, however, can sustain electron plasma waves
with electric fields in excess of E0=cme�p /e or

E0�V/m� � 96�n0�cm−3� , �1�

where �p= �4�n0e2 /me�1/2 is the electron plasma fre-
quency, n0 is the ambient electron number density, me
and e are the electron rest mass and charge, respectively,
and c is the speed of light in vacuum. Equation �1� is
referred to as the cold nonrelativistic wave breaking
field �Dawson, 1959�. For example, a plasma density of
n0=1018 cm−3 yields E0�96 GV/m, which is approxi-
mately three orders of magnitude greater than that ob-
tained in conventional linacs. Accelerating gradients on
the order of 100 GV/m have been inferred in plasma-
based accelerator experiments �Gordon et al., 1998;
Malka et al., 2002�.

In addition to extremely large accelerating gradients,
plasma-based accelerators have the potential to produce
extremely short electron bunches. The length of the ac-
celerating wave in a plasma-based accelerator is ap-
proximately the plasma wavelength �p=2�c /�p=2� /kp
or

(a)

(c) (d)
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FIG. 1. Schematic of LPAs: �a� LWFA, �b� PBWA, �c� self-
modulated �SM� LWFA, and �d� resonant laser pulse train.
Shown are the excited plasma wave potentials �solid lines� and
right-moving laser intensity envelopes �dashed lines�.



�p��m� � 3.3 � 1010/�n0�cm−3� , �2�

e.g., �p�33 �m for n0=1018 cm−3. A high-quality elec-
tron bunch produced by a plasma-based accelerator
would have a bunch duration 	b��p /c, i.e., a duration
	b�100 fs for n0=1018 cm−3. Measurements of coherent
transition radiation produced by electron bunches gen-
erated in LPAs indicated �50 fs bunch durations �Lee-
mans et al., 2004; van Tilborg et al., 2006, 2007�. LPAs,
which are typically driven by femtosecond laser pulses,
are intrinsically sources of femtosecond electron
bunches. Furthermore, the electron bunches are intrin-
sically synchronized to the laser pulses, enabling a wide
variation of pump-probe applications.

An important parameter in the discussion of intense
laser-plasma interactions is the laser strength parameter
a0, defined as the peak amplitude of the normalized vec-
tor potential of the laser field a=eA /mec

2. The laser
strength parameter is related to the peak laser intensity
I0 and power P=�r0

2I0 /2 by I0= ��c /2��mec
2a0 /e��2,

which yields

a0
2 � 7.3 � 10−19����m��2I0�W/cm2� �3�

and P�GW��21.5�a0r0 /��2, where a linearly polarized
laser field with a Gaussian radial profile is assumed, e.g.,
a=a0 exp�−r2 /r0

2�cos�kz−�t�ex with r0 the laser spot size
at focus, �=2� /k the laser wavelength, and �=ck the
laser frequency in vacuum. Furthermore, the peak laser
electric field amplitude is EL=mec�a0 /e, i.e.,
EL�TV/m��3.21a0 /���m�. Physically, a=p� /mec is the
normalized transverse “quiver” momentum of a plasma
electron in the laser field, as indicated by conservation
of transverse canonical momentum in the broad laser
pulse �or one-dimensional �1D�� limit �r0
��. When a0
�1, the electron quiver motion is relativistic and the
laser-plasma interaction is nonlinear. Relativistic elec-
tron motion �a0�1� requires laser intensities I
�1018 W/cm2 for wavelengths of ��1 �m. Such inten-
sities are routinely produced by compact, solid-state la-
ser systems based on the CPA technique.

B. Acceleration in vacuum and gases

The laser acceleration of electrons in vacuum and
gases is intrinsically limited by diffraction, electron slip-
page, ionization, and the smallness of the laser wave-
length �Esarey et al., 1995; Sprangle et al., 1996a�. In
vacuum, the motion of an electron in a laser field is de-
termined by the Lorentz force equation

dp̃/dct = �a/�ct − �p̃/�̃� � �� � a� , �4�

where p̃ is the electron momentum normalized to mec
and �̃= �1+ p̃2�1/2 is the relativistic Lorentz factor.
Roughly speaking, the first term on the right-hand side
of Eq. �4� describes the linear response of the electron to
the electric field E of the laser and is responsible for
“direct” laser acceleration, whereas the second term de-
scribes the nonlinear response to the v�B force and
is responsible for “ponderomotive” laser acceleration.

The axial �in the z direction of laser propagation� pon-
deromotive force is Fpz�−�mec

2 / �̃��� /�z�a2 /2, assuming
p̃�=a�, which is exact in one dimension �i.e., valid for
r0
��.

When a laser field propagating along the z axis is fo-
cused in vacuum, the laser spot size and intensity evolve
via rs=r0�1+z2 /ZR

2 �1/2 and I=I0�r0
2 /rs

2�exp�−2r2 /rs
2�, re-

spectively, where ZR=kr0
2 /2 is the Rayleigh length, and a

fundamental Gaussian mode is assumed. The finite laser
spot size implies the existence of an axial component of
the electric field of the laser via � ·E=0, i.e., Ez
��1/kr0�E�. The amplitude of this axial field can be
very large, which suggests using the axial field directly
for laser acceleration, with an energy gain for a relativ-
istic ��̃
1� electron propagating along the axis scaling
as �dz�vzEz�. The phase velocity, however, of the optical
field along the axis is greater than c and is vph/c�1
+1/kZR near the focus. Since vph�c, electrons with vz
�c will phase slip with respect to the accelerating field
and decelerate. This will occur over a dephasing length,
which for highly relativistic electrons is �ZR, i.e., the
dephasing length is on order of the diffraction length.
Higher-order laser modes have also been considered for
vacuum laser acceleration �Hafizi et al., 1997; Varin and
Piché, 2002; Karmakar and Pukhov, 2007�, as well as ex-
ploiting subluminal phase regions in the three-
dimensional �3D� laser focal volume �Pang et al., 2002;
Popov et al., 2008�.

This phase slippage argument forms the basis for the
so-called Lawson-Woodward theorem �Woodward 1947;
Lawson, 1979; Palmer, 1980�, which states that under
certain restrictive conditions no net electron energy gain
is possible using laser fields. The Lawson-Woodward
theorem assumes �i� the region of interaction is infinite,
�ii� the laser fields are in vacuum with no walls or bound-
aries present, �iii� the electron is highly relativistic �vz
�c� along the acceleration path, �iv� no static electric or
magnetic fields are present, and �v� nonlinear effects
�e.g., ponderomotive and radiation reaction forces� are
neglected.

One or more of the assumptions of Lawson-
Woodward theorem must be violated in order to achieve
a nonzero net energy gain. For example, one can intro-
duce optics to limit the laser-electron interaction to ap-
proximately a region of length 2ZR about the focus, such
that minimal phase slippage occurs �Esarey et al., 1995;
Huang and Byer, 1996; Plettner et al., 2005�. The maxi-
mum energy gain due to laser acceleration by the Ez

field is then W�MeV��31�P�TW�, where a first-order
Laguerre-Gaussian mode has been assumed �Esarey et
al., 1995�. Although substantial energy gains are possible
with high laser power, this is problematic in practice
since this method requires that optics be placed near the
focus and are susceptible to laser damage at high inten-
sity. Furthermore, the electron bunch must pass through
a small aperture in the optics, which can limit the
amount of charge that can be accelerated �Sprangle et
al., 1996a�. Experiments demonstrated a 30 keV energy
modulation on a 30 MeV electron beam from the inter-



action with a 0.5 mJ, 4 ps laser pulse in a semi-infinite
vacuum region, i.e., the interaction was terminated by an
8 �m thick gold-coated Kapton tape near focus �Plett-
ner et al., 2005�.

Alternatively, finite energy gains can be achieved by
introducing a background of gas into the interaction re-
gion, as in the inverse Cherenkov accelerator �Kimura et
al., 1995�. The gas can reduce the phase velocity of the
laser field to less than c, reducing the slippage. Further-
more, in principle, diffraction can be overcome by rely-
ing on optical guiding �self-focusing� in the gas �Sprangle
et al., 1996b�. Nevertheless, ionization of the gas, which
occurs at a relatively low laser intensity �1014 W/cm2

�for �	1 �m� and increases the phase velocity, remains
a fundamental limitation to the accelerating field in gas-
filled devices. Experiments demonstrated a 3.7 MeV
modulation on a 40 MeV electron beam using a
580 MW CO2 laser pulse interacting with a 12 cm gas-
filled cell �Kimura et al., 1995�. Another method to re-
duce the phase velocity is to propagate the laser in a
plasma channel with an axially modulated density, which
supports laser modes with subluminal spatial harmonics
�York et al., 2008�.

In addition to direct laser acceleration, finite energy
gains can also result from the nonlinear or ponderomo-
tive force. Since the ponderomotive force scales in-
versely with electron energy and proportional to the la-
ser intensity, Fp��1/ �̃��a2, this mechanism is most
efficient at low electron energies and high laser intensi-
ties. Simulations �Quesnel and Mora, 1998� and experi-
ments �Malka et al., 1997� have shown that by focusing a
high-intensity laser pulse onto a source of electrons �ex-
perimentally created by a preexploded thin foil�, pon-
deromotive acceleration can result in the production of
electrons with energies in the range of a few MeV with a
large energy spread and a high degree of scattering. In
principle the scattering can be reduced using high-order
laser modes �Stupakov and Zolotorev, 2001�. Simula-
tions �Pang et al., 2002; Popov et al., 2008� indicated that
when a moderate energy electron bunch intersects with
a very intense laser pulse at a small angle, a signification
fraction of the electrons can be accelerated to energies
in excess of 100 MeV �for a�10� through a combination
of direct and ponderomotive acceleration. Other pon-
deromotive acceleration schemes include the vacuum
beat wave accelerator �Esarey et al., 1995�, which relies
on the ponderomotive force of the beat wave produced
by two copropagating laser pulses, and the inverse free-
electron laser �Liu et al., 1998; Kimura et al., 2001; Musu-
meci et al., 2005�, which relies on the beat wave pro-
duced by a laser pulse propagating through a magnetic
wiggler field. Again, a major limitation to these schemes
is the 1/ �̃ scaling of the ponderomotive force.

A fundamental limitation to all concepts that rely on
electron acceleration through the direct interaction �lin-
ear or nonlinear� with the laser field is the smallness of
the laser wavelength, typically on the order of a micron.
For example, a first-order Laguerre-Gaussian mode has
a quarter wavelength phase region for which the laser

field is both accelerating and focusing. To accelerate an
electron bunch while maintaining a small energy spread
and emittance, it is desirable that a high-quality bunch
be injected into the proper phase region of the laser field
with a bunch length small compared to a � /4 �corre-
sponding to 0.8 fs for �=1 �m�. Conventional accelera-
tors typically produce electron bunches with durations
�1 ps. One possibility may be to prebunch a conven-
tional electron bunch at the laser wavelength using an
inverse free-electron laser, as has been experimentally
demonstrated �Liu et al., 1998�, and use this as an injec-
tor into a second stage of a laser accelerator �Kimura et
al., 2001, 2004�.

Plasma-based accelerators can overcome many of the
fundamental limitations that restrict laser acceleration in
vacuum and gases. For example, ionization and break-
down are not limitations since the plasma can be fully
preionized. Diffraction can be overcome through self-
focusing and with preformed plasma channels. In
plasma-based accelerators, acceleration is the result of
the axial field of the plasma wave and not the laser field
directly. The phase velocity of the plasma wave is typi-
cally equal to the group velocity of the laser pulse and is
less than c. Although the plasma wave is excited by the
ponderomotive force of the laser field, the 1/ �̃ scaling of
the ponderomotive force is not a limitation since �̃�1
for the plasma electrons. In effect, the plasma acts as a
transformer, converting the transverse laser field into the
axial electric field of the plasma wave. Furthermore, the
accelerating wavelength is the plasma wavelength �p,
which is typically 10–1000 times larger than the laser
wavelength, and in many cases approximately equal to
the laser pulse length. The injection of ultrashort elec-
tron bunches into a single period of a plasma wave is
possible using self-injection or laser injection methods
�see Sec. IV�. Plasma-based acceleration methods are,
however, subject to their own intrinsic limitations, such
as restrictions arising from electron dephasing, pump
depletion, and, in some cases, laser-plasma instabilities.

II. PLASMA WAVES AND ACCELERATION

Calculation of the plasma wakefields �driven electron
plasma waves� generated by nonevolving drive laser
pulses is straightforward. Analytical solutions exist in
the 3D linear regime and in the 1D nonlinear regime.
In the 3D nonlinear regime, the use of numerical codes
is usually required. The full problem, which includes
the self-consistent evolution of the drive laser pulses, is
sufficiently complicated to require numerical calcula-
tion. Various aspects of the propagation and transport
of the drive beams will be discussed in subsequent sec-
tions. Before discussing specific LPA configurations
�e.g., PBWA, LWFA, self-modulated LWFA, etc.�, the
physical forces that drive wakefields �i.e., space charge
and ponderomotive forces� and the mathematical mod-
els used to describe wakefield generation will be briefly
discussed. In the following, it is convenient to use the



normalized electrostatic �=e� /mec
2 and vector a

=eA /mec
2 potentials.

A. Ponderomotive force

In LPAs, wakefields are driven via the ponderomotive
force. The ponderomotive force �Kruer, 1988� can be de-
rived by considering the electron fluid momentum equa-
tion in the cold fluid limit,

dp/dt = − e�E + �v � B�/c� , �5�

where p and v are the plasma fluid element momentum
and velocity, respectively, and d /dt=� /�t+ �v ·��. The
electric and magnetic fields of the laser can be written as
E=−�A /�ct and B=��A, where the vector potential of
the laser is polarized predominately in the transverse
direction, e.g., A=A0 cos�kz−�t�e�. In the linear limit

a 
 =e 
A 
 /mec

2�1, the leading-order electron fluid mo-
tion is the quiver momentum pq=meca, as indicated by
�pq /�t=−eE. Letting p=pq+�p, the second-order mo-
tion is

d�p/dt = − ��pq/me� · ��pq − pq � �c � � a�

= − mec
2 � �a2/2� . �6�

Hence, Fp=−mec
2� �a2 /2� is the 3D ponderomotive

force in the linear limit �a2�1�. The ponderomotive
force can also be viewed as the radiation pressure �i.e.,
the gradient of the electromagnetic energy density�.

In the 1D nonlinear regime, conservation of canonical
momentum implies u�=p� /mec=a�, i.e., a� is the nor-
malized quiver momentum. Hence, in one dimension,
the nonlinear ponderomotive force is Fpz=
−�mec

2 /2���a�
2 /�z. In the 3D nonlinear regime, the

leading-order transverse motion of the electron fluid is
still the quiver motion, u��a�, provided that the laser
pulse is propagating in an underdense plasma and has a
sufficiently broad spot size, r0��p
�. Defining �u=u
−a, the fluid momentum equation can be written as
�Sprangle et al., 1992; Chen and Sudan, 1993; Esarey,
Sprangle, et al., 1993�

��u/�ct = ��� − �� , �7�

which is exact under the assumption that the vorticity
���u is initially �prior to the passage of the laser pulse�
zero. Here �� is the space-charge force and �� repre-
sents the generalized nonlinear ponderomotive force
FpN=−mec

2��.

B. Linear plasma waves

In the linear �a�1� 3D regime, wakefield generation
can be examined using the cold fluid equations, i.e., the
Poisson equation, the continuity equation, and the fluid
momentum equation. For example, the plasma wave
generated in an initially uniform plasma is described by
�Gorbunov and Kirsanov, 1987; Sprangle et al., 1988; Es-
arey et al., 1989�

��2/�t2 + �p
2��n/n0 = c2�2a2/2, �8�

��2/�t2 + �p
2�� = �p

2a2/2, �9�

where �n /n0= �n−n0� /n0 is the normalized density per-
turbation associated with the electrostatic wake � in the
limit a2�1. The solutions for the density perturbation
�
�n /n0 
 �1� and electric field of the wake are

�n/n0 = �c2/�p��
0

t

dt�sin ��p�t − t����2a2�r,t��/2 �10�

and

E/E0 = − c�
0

t

dt�sin ��p�t − t��� � a2�r,t��/2, �11�

respectively. Equations �10� and �11� describe plasma
waves generated at the frequency �p and are valid for
E�E0, where E0=mec�p /e is the cold nonrelativistic
wave breaking field �Eq. �1��. Solutions to Eqs. �10� and
�11� indicate that wakefields will be generated most effi-
ciently when the envelope scale length, which character-
izes the axial gradient in the normalized laser intensity
a2, is on the order of the plasma wavelength �p
=2�c /�p. The radial extent of the wake is on the order
of the laser spot size rs.

In addition to the axial wakefield Ez, transverse wake-
fields Er and B� will be generated. For a2�1, Ez�Er
�a2 and B��a4. The transverse wakefields are related
to the axial wakefield by the Panofsky-Wenzel theorem
�Panofsky and Wenzel, 1956; Keinigs and Jones, 1987�,
�Ez /�r=��Er−B�� /��z−ct�. A relativistic particle with
axial velocity vz�c that is being accelerated by a wake-
field with phase velocity vp�c will experience a radial
force proportional to Er−B�. Notice that if the axial field
is Ez�exp�−2r2 /rs

2�cos�kp�z−ct��, then Er−B�

��4r /kprs
2�exp�−2r2 /rs

2�sin�kp�z−ct�� and the radial
force is zero along the axis. For a2�1, there is a phase
region of the wake of width kp 
�z−ct� 
 =� /4 for which
a relativistic electron will experience simultaneous axial
accelerating and radial focusing forces.

Equations �8�–�11� are valid to �O�a2� assuming a2

�1. Applying a perturbation expansion of the fluid
quantities in powers of a, higher-order corrections to the
density and field may be computed �Gorbunov et al.
1997�. In particular a quasistatic �varying on the time
scale ��p

−1� magnetic field that scales as �O�a4� is gen-
erated in an initially uniform plasma, given by �Gor-
bunov, et al., 1996, 1997�

��ct
2 − �2 + kp

2�B/E0 = − kp
−3 � � ����ct���2��/4, �12�

behind the drive laser, where � is given by Eq. �9�.
The linear response of plasma wave excitation in a

plasma channel �transverse plasma inhomogeneity�, n
=n�r�, has been investigated by Andreev et al. �1997�.
The channel results in increasing curvature of the
plasma wave fronts with increasing distance behind the
drive laser. As a consequence, the plasma wave phase
region where simultaneous acceleration and focusing oc-
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cur increases. Wake excitation in a plasma channel also
leads to damping of the plasma wave �Andreev et al.,
1997; Shvets and Li, 1999�. For a wide �kprch
1� para-
bolic, n=n0�1+r2 /rch

2 �, plasma channel the amplitude of
the plasma wave on axis decreases as �n��� /�n�0�=1
−2�2 /kp

2rch
4 , where �=z−ct is the distance behind the la-

ser pulse �Andreev et al., 1997�.

C. Nonlinear plasma waves

In the linear regime, E�E0, the plasma wave is a
simple sinusoidal oscillation with frequency �p and a
wave phase velocity vp �the phase velocity is determined
by the driver�, e.g., �=�0 cos��p�z /vp− t��. When E
�E0, the plasma wave becomes highly nonlinear. Wake-
field generation in the nonlinear 1D regime can be ex-
amined by assuming that the drive beam is nonevolving,
i.e., the drive beam is a function of only the coordinate
�=z−vpt, where vp�c is the phase velocity of the
plasma wave. For laser drivers, vp�vg, where vg is the
laser pulse group velocity. The quasistatic approximation
�Sprangle et al., 1990a, 1990b� can be applied such that
the plasma fluid quantities are also assumed to be func-
tions only of the comoving variable �. The 1D limit ap-
plies to broad drivers, kpr�
1, where r� is the charac-
teristic radial dimension of the drive beam. The 1D
quasistatic fluid momentum and continuity equations
give

u� − a� = 0, �13�

� − �puz − � = 1, �14�

n��p − �z� = �pn0. �15�

The Poisson equation �2� /��2=kp
2�n /n0−1� can be writ-

ten as �Berezhiani and Murusidze 1992; Esarey, Ting, et
al., 1993; Teychenné et al., 1993�

kp
−2�2�

��2 = �p
2��p1 −

��
2

�p
2�1 + ��2�−1/2

− 1� , �16�

where ��
2 =1+u�

2 =1+a2, �p= �1−�p
2�−1/2, and �p=vp /c.

The axial electric field of the wake is Ez=−E0�� /�� and
the plasma fluid quantities are

n/n0 = �p
2�p�1 −

��
2

�p
2�1 + ��2�−1/2

− �p� , �17�

uz = �p
2�1 + ���p − �1 −

��
2

�p
2�1 + ��2�1/2� , �18�

� = �p
2�1 + ��1 − �p�1 −

��
2

�p
2�1 + ��2�1/2� . �19�

In the limit �p
2
1, Eq. �16� simplifies to �Bulanov et al.,

1989; Berezhiani and Murusidze, 1990; Sprangle et al.,
1990a, 1990b�

kp
−2�2�

��2 =
�1 + a2�

2�1 + ��2 −
1
2

, �20�

and the plasma fluid quantities are

n/n0 =
��

2 + �1 + ��2

2�1 + ��2 , �21�

uz =
��

2 − �1 + ��2

2�1 + ��
, �22�

� =
��

2 + �1 + ��2

2�1 + ��
. �23�

The above expressions for the cold fluid motion u and �
also describe the single particle motion of an electron �p̃
and �̃, initially at rest� in the potentials a��� and ����.

Analytical solutions to Eq. �20� in terms of elliptic in-
tegrals can be found for square laser pulse profiles �Bu-
lanov et al., 1989; Berezhiani and Murusidze 1990;
Sprangle et al., 1990a, 1990b�. As the plasma wave am-
plitude becomes nonlinear, the plasma wave steepens
and its period lengthens.

In the region behind the drive beam, a2=0, an analysis
of Eq. �16� indicates that the electrostatic potential os-
cillates in the range �min����max and the axial electric
field oscillates in the range −Emax�E�Emax. The values
�min and �max, denoted by �m, are �Esarey and Pilloff,
1995�

�m = Êmax
2 /2 ± �p��1 + Êmax

2 /2�2 − 1�1/2, �24�

where Êmax=Emax/E0 and the � give �max and �min, re-
spectively. For Emax/E0�1, Eq. �16� indicates that the
electric field departs from a simple sinusoidal form
�Akhiezer and Polovin, 1956; Bulanov et al., 1989; Be-
rezhiani and Murusidze, 1990; Sprangle et al., 1990a,
1990b�. In particular, the electric field exhibits the char-
acteristic “sawtooth” profile associated with wave steep-
ening and the density oscillations become highly peaked
�as illustrated in Fig. 8 in Sec. III.A�. Furthermore, the
period of the nonlinear plasma wave increases as the
amplitude increases. The nonlinear plasma wavelength
in the limit �p
1 is �Bulanov et al., 1989; Berezhiani and
Murusidze, 1990; Sprangle et al., 1990a, 1990b� �Np

= �2/���p�1+�max�1/2E2���, where E2���=�0
�/2d��1

−�2sin2��1/2 is the complete elliptic integral of the sec-
ond kind with argument �2=1− �1+�max�−2 or

�Np = �p�1 + 3�Emax/E0�2/16, Emax/E0 � 1

�2/���Emax/E0 + E0/Emax� , Emax/E0 
 1,
�

�25�

where Emax is the peak electric field of the plasma wave
and �p=2� /kp=2�c /�p. For a square laser pulse profile,
with optimal length for plasma wave excitation �L
��Np /2�, Emax/E0= �a2 /2��1+a2 /2�−1/2 for a linearly po-
larized laser.

The lengthening of the plasma wave period can be
important in plasma-based accelerators. For example, in



the PBWA, the plasma wave is driven at a constant beat
frequency �=�1−�2��p. As the wave grows, how-
ever, the effective plasma frequency decreases, �p,eff
=2�c /�Np. Hence, the driver �i.e., the laser beat wave�
becomes out of phase with the nonlinear plasma wave.
This leads to saturation of the plasma wave amplitude in
the PBWA �Rosenbluth and Liu, 1972; Tang et al., 1985�.
Alternatively, if the plasma wave is to be driven to large
amplitudes by a series of individual laser pulses, the
change in the nonlinear plasma period can affect the
optimal spacing between pulses as well as the optimal
duration of the pulses �Umstadter et al., 1994�.

In the 3D nonlinear regime, numerical calculations
are usually required. One possible approach is to use a
full nonlinear plasma fluid model �Shadwick et al., 2002�
or a nonlinear quasistatic fluid model �Sprangle et al.,
1992; Esarey, Sprangle et al. 1993�, which is discussed in
Sec. V. An alternative �more computationally expensive�
approach for wakefield calculation is to use particle
simulations �Pukhov and Meyer-ter-Vehn, 1996; Tzeng et
al., 1996; More and Antonsen, 1997; Ren et al., 2000�.
An example of a nonlinear plasma wave in two dimen-
sions, as computed using a fluid model �Shadwick et al.,
2002�, is shown in Fig. 2. Figure 2 shows the density
perturbation excited by a Gaussian laser pulse with a0
=1.5, k /kp=20, kpr0=8, and kpLrms=1, where Lrms is the
root-mean-square �rms� length of the laser intensity pro-
file. The short wavelength oscillations observed at the
front of the plasma wave are at half the laser wavelength
and result from the linear polarization of the pulse.

The increase in the plasma wavelength with increasing
wave amplitude has an additional effect on nonlinear 3D
plasma waves. Consider a plasma wave that is driven
more strongly on axis than off axis, e.g., a laser-driven
accelerator, where the laser intensity peaks on axis and
typically has a Gaussian radial profile. On axis, the
plasma wave amplitude is maximum and, in the nonlin-
ear regime, the plasma wavelength on axis is larger than
off axis. Thus the plasma wavelength varies as a function
of radius �Np�r�. This causes the wave fronts of the
plasma wave to become curved and take on a “horse-
shoe” shape. For a plasma wave of fixed amplitude, the
farther back within the plasma wave train, the more

curved the plasma wave front, i.e., after � periods, the
phase front at large radii is located at ��p, whereas on
axis, the phase front is located at ��Np�r=0�. This effect
has been observed in two-dimensional �2D� nonlinear
quasistatic fluid simulations �Sprangle et al., 1992; Krall
et al., 1993; Esarey, Sprangle, et al., 1993�, 2D particle
simulations �Decker et al., 1994; Bulanov et al., 1995,
1997�, and 2D full fluid simulations �e.g., see Fig. 2�. Cur-
vature of the plasma wave fronts can lead to transverse
wave breaking, as discussed in Sec. II.D.

D. Wave breaking

Plasmas are capable of supporting large amplitude
electrostatic waves with phase velocities near the speed
of light. In the linear regime, the electric field of a
plasma wave in a plasma-based accelerator has the form
Ez=Emax sin��p�z /vp− t��, where vp�c is the phase ve-
locity. The peak field amplitude Emax of the plasma wave
can be estimated from the Poisson equation � ·E
=4�e�n0−ne�. A simple estimate for the maximum field
amplitude is given by assuming all plasma electrons are
oscillating with a wave number kp=�p /c. This gives
��p /c�Emax=4�en0 or Emax=E0, where E0=cme�p /e is
the cold nonrelativistic wave breaking field �Dawdson,
1959�.

It is possible for the maximum amplitude of a nonlin-
ear plasma wave to exceed the value E0. Using the non-
linear, relativistic, cold fluid equations in one dimension,
the maximum amplitude of a periodic plasma wave is
�Akhiezer and Polovin, 1956; Esarey and Pilloff, 1995�

EWB = �2��p − 1�1/2E0, �26�

which is referred to as the cold relativistic wave breaking
field, where �p= �1−vp

2 /c2�−1/2 is the relativistic Lorentz
factor associated with the phase velocity of the plasma
wave. The plasma wave phase velocity is approximately
the group velocity of the laser, which in the 1D low-
intensity limit is �p�� /�p, where � is the frequency of
the laser. As an example, consider an LPA with a plasma
density of n0�1017 cm−3. For a laser wavelength of
1 �m, �p�100 and EWB�14E0. Note that when the
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plasma wave field amplitude approaches EWB, Eq. �24�
implies �1+��→1/�p, and the cold plasma density �Eq.
�17�� becomes singular, n→�. This singularity indicates
a breakdown of the cold fluid equations. Cold fluid
theory will be a good approximation near the wave
breaking field in the limit �p�th��p, where c�th
= �kBT0 /m�1/2 is the thermal velocity spread of the
plasma electrons, with T0 the initial electron plasma
temperature and kB the Boltzmann constant. In a warm
plasma, the electron distribution has a thermal spread
about its mean fluid velocity, and thermal effects �i.e.,
pressure� will reduce the maximum plasma wave ampli-
tude or wave breaking field.

In the limit of slow phase velocity waves, �th��p�1,
corrections to the cold nonrelativistic wave breaking
field E0 have been calculated using a warm fluid model
by Coffey �1971�. In the ultrarelativistic phase velocity
�p=1 limit, the warm wave breaking field was found
�Rosenzweig, 1988; Katsouleas and Mori, 1989� to be
EWB�E0 /�th

1/2. This expression for EWB is valid for
�p�th
1, e.g., for an ultrarelativistic ��p=1� particle
beam driver. For laser-driven plasma waves, however,
typically plasma wave phase velocities are �p�10–100
and initial �photoionized� plasma temperatures are
�th

2 mc2�10 eV �Durfee et al., 1995; Volfbeyn et al.,
1999�. Therefore, an LPA typically satisfies �p�th�1,
and, hence, the above expression for EWB does not ap-
ply.

A warm relativistic fluid theory can be used to de-
scribe wave breaking in the regime of laser-driven
plasma waves �Schroeder et al., 2005�. This theory as-
sumes kBT�mc2 �i.e., nonrelativistic plasma tempera-
tures�. Using the 1D quasistatic warm fluid momentum
and continuity equations, the Poisson equation can be
written as �Schroeder et al., 2005�

�2

��2���1 − �pwz�
�1 − wz

2�1/2 +
3
2
�th

2 �1 − �pwz��1 − wz
2�1/2

���1 − �p
−1wz�2 �

=
kp

2wz

�p − wz
, �27�

where wz is the warm fluid axial velocity. For example,
Fig. 3 plots the plasma density n /n0 �dotted curve�,
plasma wave electric field Ez /E0 �solid curve�, and
plasma temperature T /T0 �dashed curve� as a function
of �=z−vpt excited by a Gaussian laser pulse a
=a0 exp�−�2 /4Lrms

2 � with a0=2 and kpLrms=1 for �p=10.
The plasma temperature undergoes periodic oscillations
in the wake owing to compression of the plasma density
�Shadwick et al., 2004, 2005; Schroeder et al., 2005; Es-
arey et al., 2007�. The temperature evolution behind the
laser pulse �to lowest order in the small parameter
kBT /mc2�1� is given by T= ��n /n0�2�1−wz

2��T0.
The wave breaking limit, defined as the maximum am-

plitude of an electrostatic standing wave �a function of
only �=z−vpt� allowed within the fluid model, can be
calculated using Eq. �27�. For example, the lowest-order
corrections �in the limit �p�th��p� to the cold relativis-

tic wave breaking field �Eq. �26�� are �Schroeder et al.,
2005�

�EWB/E0�2 � 2����p − 1� − �p
2�p���8�th/3 − 2�th

2 � ,

�28�

where �th= �3�th
2 �p

2 /��
2 �p

2�1/4. Equation �28� includes the
possible presence of an intense laser field �e.g., the self-
modulated LWFA�, with ��

2 =1+a2. The wave breaking
field is larger in the presence of a laser field. For a
plasma wave behind the drive laser pulse, ��=1. In the
warm fluid theory of wave breaking there is no shock
formation �i.e., the density remains finite� at the wave
breaking limit. For fields larger than Eq. �28� no travel-
ing wave solutions exist. Figure 4 shows the wave break-
ing field, EWB/E0 �solid curve�, versus initial tempera-
ture �th

2 with �p=10 and ��=1. The dotted curve is the
ultrarelativistic result ��p=1� and the dashed line is the
cold limit ��th=0�. Note that for typical short-pulse laser-
plasma interactions, �th

2 �10−4.
The above expressions for the wave breaking field

were based on 1D theories. Wave breaking in three di-
mensions has not been thoroughly investigated and gen-
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eral expressions for the maximum field amplitude are
not known. PIC simulations �Decker et al., 1994; Bul-
anov et al., 1995; Pukhov and Meyer-ter-Vehn, 2002;
Tsung et al., 2004� in two and three dimensions in the
highly nonlinear cavitated regime have demonstrated
the generation of plasma waves with amplitudes in ex-
cess of E0. The wake generation in the blow-out regime
is discussed in Sec. III.E. Simulations �Krall et al., 1993;
Shadwick et al., 2002� based on nonlinear 2D fluid equa-
tions have shown wave amplitudes in excess of E0.

The transverse structure of the plasma wave and cur-
vature of the wake phase fronts, as described in Sec.
II.C, can lead to “2D wave breaking” �Bulanov et al.,
1997�. Specifically, when the curvature radius of the
phase front is on the order of the electron fluid displace-
ment, the regular structure of the plasma wave is de-
stroyed and particle trapping may occur. For a fixed am-
plitude nonlinear 2D wake �i.e., neglecting wake
damping�, 2D wave breaking will always occur at a suf-
ficiently long distance behind the driver. The larger the
wake amplitude, the shorter the distance behind the
driver is the onset point of 2D wave breaking. A similar
effect can occur for linear �or nonlinear� plasma waves
in a plasma channel. In a plasma channel, the plasma
density is minimum on axis; hence the plasma wave-
length is longer on axis than off axis. This leads to wake
wave front curvature, and the curvature increases with
distance behind the driver until the point of 2D wave
breaking is reached.

E. Electron acceleration and dephasing

Consider an electron accelerated along the z axis
�laser-propagation axis� by a linear electrostatic plasma
wave of the form Ez=Emax sin��p�z /vp− t��. As the elec-
tron is accelerated, its velocity will increase and ap-
proach the speed of light, vz→c. If the phase velocity of
the plasma wave is constant with vp�c, the electrons
will eventually outrun the plasma wave and move into a
phase region of the plasma wave that is decelerating.
This limits the energy gain of the electron in the plasma
wave and is commonly referred to as electron dephasing.
The dephasing length Ld is defined as the length the
electron must travel before it phase slips by one-half of a
period with respect to the plasma wave. For a highly
relativistic electron, vz�c, the linear dephasing length
Ld is given by �1−vp /c�Ld=�p /2, i.e., Ld��p

2�p, assum-
ing �p=� /�p
1. The maximum energy gain after a
dephasing length �Tajima and Dawson, 1979; Joshi et al.,
1984� is roughly Wmax�eEmaxLd�2��p

2�Emax/E0�mec
2,

assuming Emax�E0.
In a 1D plasma wave, electron trapping, acceleration,

and dephasing can be studied by examining the electron
orbits in phase space �p̃ ,��, where p̃ is the normalized
electron momentum and �=kp�=kp�z−vpt� is the phase.
In the linear regime, the plasma wave is described by a
sinusoidal electrostatic potential �=�0 cos �, where �0
=Emax/E0 is the amplitude. The phase region −���
�0 is accelerating. Consider an electron injected into

the plasma wave with vz�vp at �=0. Initially, the elec-
tron is slipping backward with respect to the plasma
wave. If the initial electron velocity is too low, the elec-
tron does not gain sufficient energy and vz�vp at �
=−�. Hence, the electron would be untrapped and
would continue to slip backward through the plasma
wave. If, however, the electron has a sufficiently high
initial velocity such that vz�vp as the electron ap-
proaches �→−�, the electron will be trapped and ex-
ecute closed orbits in the −����� phase region. The
separatrix, which separates the region of trapped and
untrapped orbits in phase space, is shown in Fig. 5 for
�p=10 and �0=0.1.

The motion of a test electron in a 1D nonlinear
plasma wave is described by the Hamiltonian �Esarey
and Pilloff, 1995�

H�p̃,�� = �̃ − �pp̃ − ���� , �29�

where H�p̃ ,��=const along a given electron orbit and
�=���� is the solution to Eq. �16�, which oscillates in
the range �min����max and is related to Emax by Eq.
�24�. In particular, the separatrix �̃s��� characterizing the
test electron orbits in ��̃ ,�� phase space is given by
H��̃s ,��=H��p ,�min�, where ���min�=�min.

Figure 6 shows several separatrices for �p=20 and for
different values of the plasma wave amplitude, given by
Emax/E0=0.18, 0.47, 1.5, 3.2, and 5.8. The value
Emax/E0=0.18 corresponds to the innermost curve and
Emax/E0=5.8 corresponds to the outermost curve. These
curves were obtained �Esarey and Pilloff, 1995� by plot-
ting H��̃s ,��=H��p ,�min� after numerically solving Eq.
�16� for �=���� with the initial conditions �� /��=0 and
�=�max at �=0. The width of the separatrix �s corre-
sponds to the nonlinear plasma wavelength, �Np
=�s /kp, given by Eq. �25�. As the plasma wave ampli-
tude increases, the nonlinear wavelength increases.
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FIG. 5. Single particle orbits in phase space �p̃ ,kp�� for an
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normalized potential given by �=�0 cos �, with �p=10 and
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The maximum momentum p̃max and minimum mo-
mentum p̃min, denoted by p̃m, for an electron on the
separatrix are �Esarey and Pilloff, 1995�

p̃m = �p�p�1 + �p�� ± �p��1 + �p��2 − 1�1/2, �30�

where �=�max−�min, i.e., �=2�p��1+ Êmax
2 /2�2−1�1/2,

as indicated by Eq. �24�. In the limits �p�
1 and �p
2


1, p̃max�2�p
2� and p̃min�−� /2+1/ �2��. In par-

ticular, the maximum energy of a trapped electron is
�Esarey and Pilloff, 1995�

�̃max � 2�p
2 ��2Êmax for 2 
 Êmax

2 
 1/4�p
2

Êmax
2 for Êmax

2 
 2,
� �31�

where Êmax=Emax/E0. The limit Êmax
2 �2 corresponds to

the well-known limit for linear sinusoidal plasma waves
�Tajima and Dawson, 1979; Joshi et al., 1984; Mora,

1992�. When Êmax
2 
2, however, �̃max�2�p

2Êmax
2 , which

implies that higher electron energies can be obtained for
electrons trapped in nonlinear plasma waves. The non-

linear regime where Êmax�1 has been observed in simu-
lations of the self-modulated LWFA �Krall et al., 1993;
Decker et al., 1994; Bulanov et al., 1995� and laser wake-
fields driven by multiple pulses �Nakajima, 1992; Bon-
naud et al., 1994; Umstadter et al., 1994�. For the maxi-
mum field in a cold plasma �Emax=EWB�, Eq. �30�
indicates that �Esarey and Pilloff, 1995� �̃max=4�p

3 −3�p.
An estimate for the dephasing length is given by

Wmax=mec
2�̃max=eEmaxLd. This yields

Ld = �p
2�Np ��2/� , Êmax � 1

1/2, Êmax 
 1,
� �32�

where �Np is given by Eq. �25�. The actual dephasing
length �Teychenné et al., 1994b� requires the simulta-
neous solution of the equation of motion and Eq. �16�.

As an example, consider an LWFA with n0=2.8
�1018 cm−3 and �=1 �m, i.e., �g��p�20 and E0

�160 GV/m. In the limit Êmax
2 
2, Eq. �31� yields

Wmax�400Êmax
2 , where Wmax�mec

2�̃max. At the maxi-
mum field in a cold plasma, EWB�6.2E0 and Wmax

�16 GeV. Notice that �̃max�4�p
3Emax/EWB, assuming

�p
2
1 and �p�Emax/EWB�2
1. Hence, for a fixed value

of Emax/EWB, �̃max�n0
−3/2 and substantially higher single-

stage energy gains can be achieved by operating at lower
densities, albeit with longer acceleration stages.

Note that the above results are obtained from 1D
theory and assume a constant amplitude plasma wave.
An evolving plasma wave amplitude and 3D effects alter
these results. For example, Mora �1992� showed that the
effects of laser diffraction can lead to a more restrictive
trapping condition for linear plasma waves.

F. Plasma wave phase velocity

The phase velocity of the plasma wave is important
for determining the minimum injection energy, the maxi-
mum energy gain, the maximum plasma wave ampli-
tude, and the dephasing length. Neglecting the evolution
of the drive beam as it propagates, the phase velocity of
the plasma wave is equal to the group velocity of the
drive laser.

In the linear regime, the group velocity of a laser
pulse in a plasma can be determined from the 1D dis-
persion relation, �2=c2k2+�p

2. This yields vg=c�1
−�p

2 /�2�1/2 and �g= �1−vg
2 /c2�−1/2=� /�p. Nonlinear cor-

rections to the group velocity in one dimension have
been analyzed by Decker and Mori �1994�. Note that, in
the nonlinear regime the linear relation vg=c2k /� is no
longer valid. In the long pulse, underdense �p /��1
limit, the nonlinear group velocity was found by Decker
and Mori �1994� to be �g= �� /�p�����+1� /2�1/2, which in
the limit a2�1 gives �g��� /�p��1+a2 /8�. A calculation
based on the intensity transport velocity yields �g
��� /�p��1+3a2 /8� �Esarey et al., 2000�.

The group velocity of a laser pulse is also reduced by
3D effects. For example, consider a laser pulse in
vacuum undergoing Rayleigh diffraction. The evolution
of the spot size �or radius� of a Gaussian laser pulse
evolves according to rs=r0�1+z2 /ZR

2 �1/2, where r0 is the
minimum spot size at the focal point z=0 and ZR

=kr0
2 /2 is the Rayleigh length. In effect, the photons are

traveling at approximately a diffraction angle �d=r0 /ZR
with respect to the z axis. Hence, the axial group veloc-
ity is reduced by vg�c cos �d�c�1−�d

2 /2�. A more de-
tailed calculation indicates that, in the linear regime, the

FIG. 6. Phase-space separatrix �s��� plotted for several values
of the plasma wave amplitude Emax/E0=0.18, 0.47, 1.5, 3.2, and
5.8, with �p=20. The value Emax/E0=0.18 corresponds to the
innermost curve and Emax/E0=5.8 corresponds to the outer-
most curve. From Esarey and Pilloff, 1995.



3D group velocity is given by �Esarey and Leemans,
1999�

�g � ��p
2/�2 + 2c2/�2r0

2�−1/2. �33�

In effect, the linear 3D dispersion relation is �2−c2k2

=�p
2 +2c2 /r0

2 �for a matched laser pulse in a parabolic
plasma channel, �2−c2k2=�p

2 +4c2 /r0
2�. For tightly fo-

cused laser pulses, this 3D correction can significantly
limit the group velocity. As an example, consider a laser
pulse with a �=1 �m wavelength and r0=10 �m spot
size, propagating in a plasma of density n0=1016 cm−3; in
one dimension, �g�330, however, the finite spot size re-
duces the group velocity such that �g�44.

Distortions of the pulse driving the plasma wave can
also affect the plasma wave phase velocity. In the LWFA
in the 1D limit, it has been shown that the wake phase
velocity is approximately equal to the group velocity as-
sociated with the position of the peak of intensity profile
�Decker and Mori, 1994�. Furthermore, the plasma wave
can lead to locally enhanced diffraction and focusing,
which distorts the pulse profile and reduces the plasma
wave phase velocity �Leemans et al., 1996�.

G. Photon acceleration

In addition to accelerating electrons, a plasma wave
can be used to upshift the frequency �often referred to
as photon acceleration� of a properly phased, low inten-
sity, short laser pulse, as shown in Fig. 7 �Wilks et al.,
1989; Esarey et al., 1990�. Consider a plasma wave with
an electron density perturbation of the form �n
=−�n0 sin kp�, where �=z−ct, and a low intensity “wit-
ness” laser pulse centered about �=0 with a pulse length
L��p. The local density at the front of the pulse, n��
=L /2�, will be less than that at the back of the pulse,
n��=−L /2�. Since the local phase velocity of the laser
pulse is �ph=vph/c�1+�p

2��� /2�2, where �p
2����n���,

the phase velocity at the pulse front is less than that at
the back of the pulse, i.e., vph�L /2��vph�−L /2�. Hence,
the phase peaks at the back move faster than those at
the front and the pulse wavelength decreases �the pulse

frequency increases�. For small shifts, the laser wave-
length will evolve according to ���0+z�ph, where
�ph=�0d�ph/d��0 is the difference in phase velocity
between adjacent phase peaks, z is the propagation dis-
tance, and �0=2�c /�0 is the initial laser wavelength.
Hence, the frequency shift is � /�0�1−zd�ph/d�, where
d�ph/d����p

2 /2�0
2�d��n /n0� /d�. A more detailed calcu-

lation indicates that the frequency will be upshifted ac-
cording to �Esarey et al., 1990�

�

�0
� �1 +

�p
2

�0
2

�n0

n0
kpz cos kp��1/2

, �34�

where nonlinear effects and phase slippage between the
laser pulse and plasma wave have been neglected.

Typically, the plasma wave induced frequency shifts
are small. For example, consider a laser with �=1 �m
and r0=30 �m, propagating in a plasma of density n0
=1018 cm−3 ��p=30 �m�. After propagating one Ray-
leigh length z=ZR, � /�0�1+�n0 /3n0. Small frequency
shifts, however, can be detected and this process can be
useful for diagnosing the wakefield �Marquès et al., 1996;
Siders et al., 1996; Matlis et al., 2006�. Large frequency
shifts require long propagation distances and large
plasma wave amplitudes. For example, after one elec-
tron dephasing length Ld=�p�

2 /�p
2, � /�0= �1

+2��n0 /n0�1/2. Laser redshifting and blueshifting of a
drive pulse by its plasma wakefield have also been ob-
served �Geddes et al., 2005a; Faure, Glinec, et al., 2006;
Murphy et al., 2006; Rowlands-Rees et al., 2008�.

III. LASER-PLASMA ACCELERATORS

A. Laser wakefield accelerator

In the laser wakefield accelerator �LWFA� �Tajima
and Dawson, 1979; Gorbunov and Kirsanov, 1987;
Sprangle et al., 1988�, a single, short ��1 ps�, high-
intensity ��1017 W/cm2� laser pulse drives a plasma
wave. The wakefield is driven most efficiently when the
laser pulse length is on the order of the plasma period
L��p. The LWFA was first proposed by Tajima and
Dawson �1979�. Prior to 1985, the technology for gener-
ating ultraintense picosecond laser pulses did not exist
and only the PBWA concept, described in Sec. III.B,
appeared feasible �the PBWA concept relied on long
pulses of modest intensity�. The LWFA was later rein-
vented independently by Gorbunov and Kirsanov �1987�
and by Sprangle et al. �1988�. This roughly coincides to
the time when CPA was applied to compact solid-state
lasers and a table-top terawatt laser system was first
demonstrated by Mourou and co-workers �Maine et al.,
1988�. The nonlinear theory of the LWFA in one dimen-
sion was developed by Bulanov et al. �1989�, Berezhiani
and Murusidze �1990�, and Sprangle et al. �1990a, 1990b�.
The nonlinear theory of the LWFA in two dimensions,
including the self-consistent evolution of the laser pulse,
was analyzed by Sprangle et al. �1992� and Esarey,
Sprangle, et al. �1993�.

��� ���� k
p
�

�n���

a���

�

FIG. 7. Schematic of laser pulse frequency upshifting by a
plasma wave with vp�vg�c �pulse moving to the right�. Posi-
tive frequency shifts require the laser pulse a to be centered
about regions of the plasma wave ��n=n−n0� with a decreas-
ing density.



As an intense laser pulse propagates through an un-
derdense plasma, �� /�p�2�1, the ponderomotive force
associated with the laser pulse envelope, Fp��a2, ex-
pels electrons from the region of the laser pulse. If the
length scale Lz of the axial gradient in the pulse profile
is approximately equal to the plasma wavelength, Lz
��p, the ponderomotive force excites large amplitude
plasma waves �wakefields� with phase velocities approxi-
mately equal to the laser pulse group velocity �see Fig.
1�a��. For a typical axially symmetric laser pulse �e.g., a
Gaussian profile�, the wakefield amplitude will be maxi-
mum when Lrms��p / �2��. The precise value of L that
maximizes the wake amplitude will depend on the shape
of the axial pulse profile. Following are some examples.

Linear regime sine pulse. Consider an LWFA driven
by a circularly polarized laser pulse with a normalized
intensity a2=a0

2 exp�−2r2 /rs
2�sin2��� /L� for 0���L,

where �=z−ct and a0
2�1. Solutions to Eq. �11� indicate

that the wakefield amplitude is maximum for pulse
lengths L��p. Behind the pulse, ��0, the axial electric
field and density perturbation of the wake are �Esarey et
al., 1989�

Ez

E0
= −

�

4
a0

2 exp�−
2r2

rs
2 �cos kp� �35�

and

�n

n0
= −

�

4
a0

21 +
8

kp
2rs

2�1 −
2r2

rs
2 ��exp�−

2r2

rs
2 �sin kp�

�36�

for L=�p. For linear polarization, averaging over the
fast oscillation yields Eqs. �35� and �36� with a0

2 replaced
with a0

2 /2. Notice that a tightly focused laser pulse with
kp

2rs
2 /8�1 will result in a larger density perturbation

�n /n0 on axis, whereas the axial electric field Ez on axis
is unchanged in comparison to the 1D values.

Linear regime Gaussian pulse. For a circularly polar-
ized Gaussian pulse profile, a2=a0

2 exp�−�2 /L2�, the
wakefield amplitude behind the pulse ��2
L2� is �Gor-
bunov and Kirsanov, 1987�

Emax/E0 = ���a0
2/2�kpL exp�− kp

2L2/4� , �37�

assuming a0
2�1. Equation �37� explicitly shows the de-

pendence of the wake amplitude on the pulse length L.
In particular, the wake amplitude achieves a maximum
value of Emax/E0=a0

2�� /2e�1/2�0.76a0
2 when L=�p /��2.

Nonlinear regime square pulse. Consider a circularly
polarized laser pulse with a square axial profile in the
1D limit r0

2
�p
2. The wakefield amplitude is maximum

when L��Np /2, where �Np is the nonlinear plasma
wavelength �Eq. �25�� and is �Bulanov et al., 1989; Be-
rezhiani and Murusidze, 1990; Sprangle et al., 1990a,
1990b�

Emax/E0 = a0
2�1 + a0

2�−1/2, �38�

where a0
2=3.6�10−19�2��m�I0�W/cm2� �for linear polar-

ization, replace a0
2 with a0

2 /2�. Notice that Emax��p
−1

�L−1. Hence, the wakefield amplitude can be increased
by operating at high densities and shorter pulse lengths.
At high densities, however, the laser pulse group veloc-
ity is reduced and electron dephasing can limit the en-
ergy gain, as discussed in Secs. II.E and III.G.

Nonlinear regime Gaussian pulse. Equation �16� can
be solved numerically for the plasma wave excitation in
the nonlinear regime. In Fig. 8 a plasma wave is driven
by a linearly polarized Gaussian laser pulse of the form
a=a0 exp�−�2 /4Lrms

2 �cos�k�� with pulse �rms laser inten-
sity profile� length kpLrms=1. A mildly relativistic case
a0=0.5 is shown in Fig. 8�a� and a highly relativistic case
a0=2 is shown in Fig. 8�b�. Figure 8 shows the normal-
ized density perturbation �n /n0=n /n0−1 and the nor-
malized axial electric field Ez /E0. The nonlinear effects
of wave steepening and period lengthening are evident
in Fig. 8�b�.

Because the plasma wave is driven by a single laser
pulse with L��p, the wakefield amplitude is relatively
insensitive to uncertainties in the pulse duration and the
plasma uniformity. This is shown in Fig. 9, where the
peak wakefield amplitude Emax is shown as a function of
the normalized pulse length kpLrms at fixed laser inten-
sity �a0=0.5 and 2�. Plotted in Fig. 9 is the wakefield
amplitude normalized to E0�a0

2 /2��1+a0
2 /2�−1/2, which is

the maximum wakefield amplitude for a square pulse
profile. Notice that the electric field amplitude is maxi-
mum for kpLrms	1 and is fairly insensitive to changes in
the pulse length. The �dashed� curve for the a0=2 case is
also broader because of an increase in the nonlinear
plasma wavelength.

The optimal pulse length conditions for the square,
sine, and Gaussian pulse profiles discussed above may
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FIG. 8. Time-averaged density variation �n /n0 �dashed curve�
and axial electric field Ez /E0 �solid curve� in an LWFA driven
by a Gaussian laser pulse �pulse is moving to the right, cen-
tered at kp�=0 with rms intensity length Lrms=kp

−1� for �a� a0
=0.5 and �b� a0=2.0.



be summarized as follows. For the square pulse, the
wakefield is maximum Emax=a0

2E0 when LFWHM=0.5�p
�kpLrms=0.91�. For the sine pulse, the wakefield is maxi-
mum Emax=0.82a0

2E0 when LFWHM=0.42�p �kpLrms
=0.95�. For the Gaussian pulse, the wakefield is maxi-
mum Emax=0.76a0

2E0 when LFWHM=0.37�p �kpLrms=1�.
Here the pulse length is expressed in terms of the full
width at half maximum �FWHM� length LFWHM and the
root-mean-square �rms� length Lrms of the pulse inten-
sity profile. These results assume a0

2�1 and circular po-
larization �Leemans et al., 1996�.

Furthermore, since the laser pulse in the LWFA is of
short duration, L��p, various instabilities that can be
detrimental to the propagation of long pulses can be
reduced. Schemes that use long laser pulses, L
�p, such
as the PBWA and the self-modulated LWFA, are subject
to various laser-plasma instabilities, some of which are
discussed in Sec. VI.

Perhaps the first experimental evidence for plasma
wave generation by the LWFA mechanism was obtained
by Hamster et al. �1993�. In these experiments, the emis-
sion of terahertz radiation at the plasma frequency was
observed when the plasma was driven by a laser pulse of
length L��p. Specifically, �p /2�=4.6 THz radiation
was observed for a 0.1 ps laser pulse propagating in a
plasma of density 2�1017 cm−3. This radiation is emitted
presumably by the radial electron plasma currents of the
laser-induced wakefield. Direct measurement of plasma
wave generated in the LWFA has been reported by re-
searchers at Ecole Polytechnique �Marquès et al., 1996�
and at the University of Texas at Austin �Siders et al.,
1996� using probe pulses and time-resolved frequency-
domain-interferometry techniques. In the Ecole Poly-
technique experiments �Marquès et al., 1996� a 120 fs
duration, 800 nm wavelength laser pulse with a maxi-
mum energy of 40 mJ was focused to a maximum inten-
sity of 3�1017 W/cm2 in a plasma of density 1017 cm−3.
A pair of probe pulses, separated from each other by
1.5�p, were used to map out the wakefield by adjusting
the delay between the pump and probe pulses. A plasma
wave with a perturbed density of 30–100 % was mea-

sured over several plasma periods behind the probe
pulse. At the University of Texas �Siders et al., 1996�,
three probe pulses were used to measure the density
perturbation at a fixed delay behind the pump pulse. By
varying the ambient plasma density, the plasma wave
amplitude was observed to vary in good agreement with
theory. Kotaki et al. �2002� measured the laser-driven
coherent wakefield excitation �up to 20 GeV/m� in a gas
jet with a plasma density on the order of 1018 cm−3 using
a time-resolved frequency domain interferometer.
Single-shot visualization of laser-wakefield structures
was achieved using frequency-domain holography �Mat-
lis et al., 2006�, a technique designed to image structures
propagating near luminal velocities. The frequency-
domain holography technique uses a copropagating
chirped probe pulse to encode the plasma density varia-
tions excited by the drive laser; interference of the probe
with a reference pulse allows holographic images of the
wake structure to be reconstruscted.

Dewa et al. �1998� reported the observation of elec-
tron acceleration in LFWA experiments, although with
some controversy �Bernard et al., 1999�, with energies of
100 MeV �17 MeV injected from a linac� with a 2 TW
laser system. Amiranoff et al. �1998� observed LWFA
accelerated electrons with an energy gain of 1.6 MeV
�3 MeV injected� using a 3.5 TW laser system. The peak
longitudinal electric field was estimated to be 1.5 GV/m.
Kitagawa et al. �2004� observed electron acceleration us-
ing a 1 �m, �0.5 ps duration laser exciting a plasma
wave in a glass capillary with plasma density �plasma
electrons created via ablation� of 1016 cm−3.

B. Plasma beat wave accelerator

In the plasma beat wave accelerator �PBWA� �Rosen-
bluth and Liu, 1972; Tajima and Dawson, 1979; Joshi et
al., 1984; Kitagawa et al., 1992; Clayton et al., 1993; Ever-
ett et al., 1994�, two long laser pulses of frequencies �1
and �2 are used to resonantly excite a plasma wave. This
is done by appropriately adjusting the laser frequencies
and plasma density to satisfy the resonance condition
���1−�2��p. When this is satisfied, large amplitude
plasma waves can be generated. The PBWA was first
proposed by Tajima and Dawson �1979� as an alternative
to the laser wakefield accelerator since compact, ul-
trashort pulse, ultrahigh power laser technology
�Mourou and Umstadter, 1992; Perry and Mourou, 1994�
was not available in 1979. Resonant excitation of a
plasma wave using two laser pulses had been previously
analyzed by Rosenbluth and Liu �1972� for plasma heat-
ing applications. The PBWA was subsequently analyzed
by various researchers �Joshi et al., 1984; Tang et al.,
1985; Horton and Tajima, 1986; McKinstrie and
Forslund, 1987; Esarey et al., 1988; Gibbon and Bell,
1988; Mori et al., 1988�. To overcome the problem of
dephasing between the accelerated electrons and the
plasma wave, Katsouleas and Dawson �1983� proposed
the use of a transverse magnetic field. Tang et al. �1985�
described how the plasma wave amplitude could be in-
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creased by operating at an optimal frequency mismatch
�opt, such that �1−�2=�opt. Various aspects of the
PBWA have been analyzed and simulated, such as the
self-focusing of the laser pulses by relativistic, plasma
wave, cascading effects �Esarey et al., 1988; Gibbon and
Bell, 1988; Mori et al., 1988; Esarey and Ting, 1990� and
the chaotic behavior of beat waves in the presence of an
ion wave �Leemans et al., 1992b�.

Consider two laser pulses with combined normalized
vector potentials given by a=a1 cos�k1z−�1t�
+a2 cos�k2z−�2t�, where k1,2 are the laser wave num-
bers. The ponderomotive force �a2 /2 will have a reso-
nant beat term �a2�res=a1a2 cos�kz−�t�, where k
�k1−k2. In the linear regime, plasma wave generation is
described by ��2 /�t2+�p

2��=�p
2�a2 /2�res, and the pon-

deromotive beat term can resonantly drive a plasma
wave when ���p. When the resonance condition is
exactly satisfied, �=�p, secular growth of the plasma
wave results, �=−�s sin�kz−�t�, where �s
=a1a2kp
�
 /4 and 
�
= 
z−ct
 is the distance behind the
front of the laser pulses. Hence, the amplitude of the
plasma wave within the laser pulse is �Rosenbluth and
Liu, 1972�

Emax/E0 = a1a2kp
�
/4. �39�

Furthermore, notice that the phase velocity of the
plasma wave, vp=� /k, is given by vp /c�1
−�p

2 / �2�1�2� in the limit �p
2 /�1

2��p
2 /�2

2�1, i.e., the
phase velocity of the plasma wave is approximately
equal to the group velocity of the driving lasers.

In effect, the laser beat wave acts as a series of laser
pulses, each of amplitude a1a2 and of duration 	
=2� /�. Each of these pulses generates a wake of am-
plitude Emax/E0=�a1a2 /2. The total plasma wave ampli-
tude generated by a laser beat wave of length L=N�p is
Emax/E0=N�a1a2 /2, where N is the number of laser
beat periods within the pulse.

The result given by Eq. �39� was based on linear
plasma theory, 
�
�1. Various nonlinear effects were
neglected. In particular, as discussed in Sec. II.C, as the
plasma wave amplitude increases the plasma wave pe-
riod increases. Since the period of the beat wave is fixed,
whereas the period of the plasma wave is increasing, the
plasma wave will eventually become out of phase with
the laser beat wave. This resonant detuning of the
plasma wave from the beat wave will limit the amplitude
of the plasma wave �Rosenbluth and Liu, 1972�.

The nonlinear dynamics of the beat wave generation
in one dimension with �p

2 /�2�1 can be examined using
the nonlinear Poisson equation �Eq. �20��. Analysis of
Eq. �20� indicates that the nonlinear plasma wavelength
is �Np= �4/kp��1+�s�1/2E2���, where �s is the maximum
amplitude of the plasma wave, �2=1− �1+�s�−2, and E2
is the complete elliptic integral of the second kind. In
the limit �s

2�1, �Np��p�1+3�s
2 /16�, which indicates

that the nonlinear plasma wavelength increases as the
plasma wave amplitude increases. Hence, in the limit
�s

2�1, the nonlinear plasma wave number is

kNp � kp�1 − 3�s
2/16� . �40�

The detuning and saturation of the plasma wave can
be estimated as follows. The growth of the plasma wave
will stop when the phase difference between the laser
beat wave and the plasma wave is � /2, i.e., �d��kp
−kNp��� /2. Using the linear result for the plasma wave
amplitude, �s=a1a2kp
�
 /4, yields a detuning distance
Lt= �2� /a1

2a2
2�1/34 /kp. Hence, the plasma wave amplitude

will saturate after a distance Lt behind the front of the
laser pulse, which gives a plasma wave amplitude of
�sat= �2�a1a2�1/3=Esat /E0. A more careful derivation
�Rosenbluth and Liu, 1972� of resonant detuning yields a
maximum value of the electric field at saturation of

Esat/E0 = �16a1a2/3�1/3, �41�

which assumes that the laser beat frequency is exactly
equal to the ambient plasma frequency �=�p. Satura-
tion occurs because the plasma wave period increases as
the wave grows. Hence, to partly compensate for the
increasing nonlinear plasma period, the plasma wave
can be driven to higher amplitudes by using a laser beat
period that is slightly longer �Tang et al., 1985�. In other
words, the beat frequency is slightly detuned such that
���p. Tang et al. �1985� showed that the optimum
detuning, which maximizes the plasma wave amplitude
at saturation, is

�opt/�p = 1 − �9a1a2�2/3/8. �42�

This gives a maximum saturation amplitude of

Esat/E0 = 4�a1a2/3�1/3. �43�

The above results are valid in the limit of weak pump
amplitudes a1a2�1 for which the plasma wave is driven
to saturation over a large number of beat periods. In the
highly nonlinear regime, a1a2�1, however, the same
general concepts apply to beat wave generation, i.e., the
beat wave amplitude is limited by the increasing nonlin-
ear plasma wavelength and the beat wave amplitude can
be optimized by increasing the beat wave period such
that ���p. To illustrate this, Eq. �20� is solved numeri-
cally �Umstadter et al., 1995� for a laser beat wave con-
sisting of four beat periods, as shown in Fig. 10. The
amplitudes of the lasers are a1=a2=a0, with a0=1.2, and
linear polarization is assumed, such that �a1a1�s=a0

2 /2,
where the subscript s refers to an averaging over the fast
laser period. The ambient plasma density is n0
=1016 cm−3 ��p=330 �m�. The case �=�p is shown in
Fig. 10�a�, and it is clear that the plasma wave amplitude
saturates �reaches maximum amplitude� after just the
second beat pulse. The effect of the third and fourth
beat pulses is to drive the plasma wave down to a low
amplitude. In Fig. 10�b� the beat period has been opti-
mized numerically such that the plasma wave amplitude
after the fourth beat pulse is maximized, i.e., the beat
period is increased ���p such that the length of the
beat pulse is closer to the final nonlinear plasma wave-
length �Np. This results in a dramatic increase in the final



amplitude of the plasma wave electric field, Emax�1.4
E0=13 GV/m, in comparison to the �=�p case.

The resonant detuning can be overcome by chirping
the lasers to compensate for the change in nonlinear
plasma wavelength �Deutsch et al., 1991�, resulting in a
significant increase in the plasma wave amplitude. A
modified version of the PBWA based on autoresonant
phase locking of the plasma wave to the slowly chirped
beat frequency of the driving lasers has also been pro-
posed �Lindberg et al., 2004, 2006�. This autoresonant
method allows plasma wave amplitudes beyond the de-
tuning limit and is relatively insensitive to variations in
plasma and laser parameters.

In addition to resonant detuning, the plasma wave
amplitude in the PBWA can be limited by laser-plasma
instabilities. Experiments at Ecole Polytechnique ob-
served saturation of the beat-generated plasma wave by
a parametric coupling to ion waves �Amiranoff et al.,
1992�. In general, since the laser pulse lengths in the
PBWA are long, L��p, the pulses are subject to various
laser-plasma instabilities, which are discussed in Sec. VI.

The observation of plasma wave generation in the
PBWA via Thomson scattering was first demonstrated
by Clayton et al. �1985� and later observed by several
groups �Amiranoff et al., 1992; Kitagawa et al., 1992;
Clayton et al., 1993�. Acceleration of background plasma
electrons in the PBWA was first observed by Kitagawa
et al. �1992� using two lines of a CO2 laser in a plasma of
density 1017 cm−3. Plasma electrons were trapped and
accelerated to an energy in excess of 10 MeV. A plasma
wave amplitude of �n /n0=0.05 was observed and an ac-
celeration gradient of 1.5 GV/m was estimated. Clayton
et al. �1993� observed electron acceleration in a series of
PBWA experiments preformed at the University of Cali-
fornia at Los Angeles �UCLA� using two lines of a CO2
laser in a plasma of density 9�1015 cm−3. A 28 MeV
energy gain was observed using a 2 MeV injected elec-
tron bunch, corresponding to a gradient of 2.8 MV/m
and a plasma wave amplitude of �n /n0=0.28. The
UCLA experiments were particularly well diagnosed
and various laser-plasma interaction phenomena and in-
stabilities have been observed �Leemans et al., 1991,
1992b; Everett, Lal, Clayton, et al., 1995a�. In experi-
ments at Ecole Polytechnique, Amiranoff et al. �1995�
observed acceleration in a PBWA experiment using two
Nd laser lines in a plasma of density 1017 cm−3. The en-
ergy of a 3.4 MeV injected electron bunch was observed
to increase by 1.4 MeV. A plasma wave amplitude of
2% and a gradient of 0.6 GV/m were observed. Plasma
wave saturation and parametric coupling to ion waves
were also observed in these experiments �Amiranoff et
al., 1995�. Nonresonant beat wave excitation has also
been explored as a method for operating at higher
plasma densities �Filip et al., 2004�. Extended laser-
plasma interaction lengths have been achieved in PBWA
experiments through plasma-channel generation �To-
chitsky et al., 2004�, resulting in enhanced energy gain of
injected electrons.

Parametric excitation of plasma waves by counter-
propagating lasers has also been explored analytically
�Shvets et al., 2002�. For example, plasma wave genera-
tion via four-wave mixing is possible: two copropagating
laser pulses detuned by �p interact with a counterpropa-
gating laser, driving two slow phase velocity waves, and
the beating of these slow waves �a superbeat wave�
drives a fast plasma wave for acceleration. A variation in
this scheme is to replace the two detuned copropagating
lasers with a single frequency ultrashort resonant laser
pulse �Shvets et al., 1999�. The laser intensities required
for a given accelerating gradient can be smaller for the
counterpropagating geometry compared to those re-
quired for the PBWA.

C. Multiple laser pulses

In the previous section discussing the PBWA, it was
pointed out that �i� the laser beat wave acted in effect as
a series of short laser pulses, �ii� as the plasma wave
grew the plasma period increased, which led to a loss of
resonance with respect to the laser beat pulses, and �iii�

FIG. 10. Examples of PBWA consisting of four beat pulses
with a0=1.2 in a plasma of density n0=1016 cm−3 �Umstadter et
al., 1995�: �a� without optimization �=�p, showing the effects
of detuning, and �b� with optimization ���p. Normalized
intensity profile a2 �solid curve�, wake potential � �dotted
curve�, and axial field Ez /E0 �dashed curve� vs t−z /c. Pulses
are linearly polarized �moving to the left�.



the beat period, i.e., the width of the beat pulses, could
be adjusted and optimized to maximize the plasma wave
amplitude. These general principles can be extended to
describe plasma wave generation by a series of short
laser pulses �Berezhiani and Murusidze, 1992; Nakajima,
1992; Bonnaud et al., 1994; Dalla and Lontano, 1994;
Umstadter et al., 1994�. For example, the resonant laser-
plasma accelerator �Umstadter et al., 1994� uses an opti-
mized train of short laser pulses to drive a plasma wave,
in which the width of each pulse and the spacing be-
tween pulses are independently controlled. By optimiz-
ing the pulse widths and interpulse spacings, resonance
with the plasma wave can be maintained and saturation
of the plasma wave by resonant detuning can be elimi-
nated. A sequence of m pulses is optimized when the
pulse widths and spacings are chosen to maximize the
plasma wave amplitude.

For square pulses in the linear regime �a2�1 and
Emax/E0�1�, the optimum pulse train consists of m
identical pulses, each of width L=�p /2 and separated by
a distance �2�+1��p /2, where � is an integer. The plasma
wave amplitude will be m times the single pulse value,
Emax/E0=ma0

2. This result neglects nonlinear effects. In
particular, as the nonlinear plasma wavelength increases,
resonant detuning will eventually saturate the plasma
wave amplitude.

In the nonlinear regime, however, resonance can only
be maintained by optimizing both the pulse widths and
spacings of each individual pulse. In the 1D limit with
�p

2 /�2�1, this can be examined by solving Eq. �20�. For
square pulse profiles, analytic solutions can be obtained.
It can be shown �Umstadter et al., 1994, 1995� that the
optimal width of the mth pulse Lm, the nonlinear wave-
length �Nm of the wake behind the mth pulse, and the
electric field amplitude Ezm of the wake behind the m
pulse are

Lm = �2/kp�xm
1/2E2�ym� , �44�

�Nm = �4/kp�xm
1/2E2�ŷm� , �45�

Ezm/E0 = xm
1/2 − xm

−1/2, �46�

where xm=��1
2 ��2

2
¯��m

2 , ��m
2 =1+am

2 , am is the ampli-
tude of the mth pulse, E2 is the complete elliptic integral
of the second kind, ym

2 =1−��m
2 xm

−2, and ŷm
2 =1−xm

−2. The
optimal spacing between the end of the mth pulse and
the beginning of the �m+1�th pulse is given by �2�
+1��Nm /2 �� an integer�. The maximum normalized
electric field of the wake Emax/E0, for an optimized train
of m square pulses of equal amplitudes am=a0, is plotted
in Fig. 11 versus the quantity aT

2 =ma0
2 �Umstadter et al.,

1994, 1995�. The curves show the results for 1, 3, 4, 10,
and 100 pulses. In the linear regime, Ezm=mEz1

=ma0
2E0, i.e., these curves are just straight lines. Figure

11, however, shows that in the nonlinear regime m
pulses are more efficient than the linear result, i.e.,
Ezm�mEz1. In the highly nonlinear regime, this en-
hancement can be quite dramatic. Furthermore, Fig. 11

indicates that just a few optimized square pulses are far
more efficient than a single pulse.

For square pulse profiles, both the width of the pulse
and the spacing between pulses increase for subsequent
pulses in the train since the nonlinear wavelength of the
plasma wave is increasing. For more realistic pulse pro-
files, this is not necessarily the case. Consider the electric
field envelope of each pulse modeled by a half period of
a sine function, e.g., a=a1 sin��� /L1�, with 0���L1, for
the first pulse. The result from a numerical optimization
�Umstadter et al., 1994, 1995� of Eq. �20� for a train of
four sine pulses is shown in Fig. 12. Here the plasma
density is n0=1016 cm−3 and the pulses are linearly po-
larized with equal amplitudes am=a0=1.2. Notice that
the pulse width is decreasing, i.e., the width of the first
pulse is 940 fs, whereas the width of the fourth laser
pulse is 200 fs. From Fig. 12, it can be seen that the
pulses are optimized when they reside in the region of
the plasma wave for which ��0 and d� /d��0, where
�=z−ct. This is the phase region of the plasma wave for

FIG. 11. Maximum electric field amplitude Ez /E0 vs aT
2 =ma0

2

for m=1, 3, 5, 10, and 100 optimized square laser pulses with
a0=1.

FIG. 12. Laser pulse train consisting of four optimized sine-
shaped laser pulses with a0=1.2 and n0=1016 cm−3. Normalized
intensity profile a2 �solid curve�, wake potential � �dotted
curve�, and axial field Ez /E0 �dashed curve� are plotted vs the
comoving variable t−z /c �Umstadter et al., 1995�. Pulses are
linearly polarized �moving to the left�.



which the laser pulse drives the plasma wave most effi-
ciently. As in the square wave case, �Nm, and thus the
spacing between pulses, increases with each succeeding
pulse. For this example, the total laser fluence for the
pulse train is I	tot=2.2 MJ/cm2 and the final accelerating
field is Emax�1.9 E0=18 GV/m.

D. Self-modulated laser wakefield accelerator

In the previous section it was described how a train of
laser pulses can be used to generate a large amplitude
wakefield. Under appropriate conditions, however, it is
possible for a single long laser pulse to break up into a
train of short pulses, each of these short pulses having a
width on the order of �p. Associated with the break up
of the long pulse and the formation of the pulse train is
a large amplitude plasma wave. This process is referred
to as self-modulation �Joshi et al., 1981; Andreev et al.,
1992; Antonsen and Mora, 1992; Sprangle et al., 1992;
Esarey, Sprangle, et al., 1993; Coverdale et al., 1995;
Modena et al., 1995; Nakajima et al., 1995; Moore et al.,
1997; Wagner et al., 1997; Gordon et al., 1998; Leemans
et al., 2001, 2002; Malka et al., 2001; Chen et al., 2004�.
Physically, self-modulation occurs from the plasma wave
producing periodic regions of enhanced focusing and
diffraction �Esarey et al., 1994�. The self-modulation in-
stability resembles a 2D version of a near-forward Ra-
man instability. Forward Raman scattering occurs simul-
taneously, adding to the modulation, and in the 1D limit,
pulse modulation can occur via Raman forward scatter-
ing alone �Mori et al., 1994�.

The process by which a plasma wave can modulate a
laser pulse by producing periodic regions of enhanced
focusing and diffraction was first described by Esarey
and Ting �1990�. The self-modulation of relativistically
guided laser pulses was first observed in the fluid simu-
lations of Andreev et al. �1992�, Antonsen and Mora
�1992, 1993�, and Sprangle et al. �1992�. Krall et al. �1993�
simulated a self-modulated LWFA, including the accel-
eration of an injected electron bunch, and showed that
this configuration can have certain advantages over the
standard LWFA. The self-modulation instability was
subsequently analyzed by Andreev et al. �1994, 1995�
and Esarey et al. �1994� and, in the 1D limit, Raman
forward scattering was analyzed by Mori et al. �1994�.
Extensive PIC simulations of short intense pulses propa-
gating in the high-density regime have been carried out
by Decker et al. �1994� and Bulanov et al. �1995�.

To operate in the self-modulated regime �Antonsen
and Mora, 1992, 1993; Sprangle et al., 1992; Esarey,
Sprangle, et al., 1993; Krall et al., 1993; Andreev et al.,
1994, 1995; Esarey et al., 1994� it is desirable that �i� the
pulse length be long compared to the plasma wave-
length, L��p, and �ii� the pulse power to be larger than
the power required to guide a long laser pulse, P
�Pc�1−n /nc�. Here Pc=17�� /�p�2 GW is the critical
power required for relativistic optical guiding, n is the
depth of a preformed parabolic density channel �if
present�, nc=1/�rer0

2 is the critical channel depth, and

re is the classical electron radius. The optical guiding of
laser pulses by relativistic effects and density channels
will be discussed in the Sec. V. In the remainder of this
section, it will be assumed that the laser pulse is propa-
gating in an initially uniform plasma �n=0�. Since �p

�n0
−1/2 and Pc�n0

−1, for fixed laser parameters, the con-
ditions L��p and P�Pc can usually be satisfied by op-
erating at a sufficiently high plasma density.

Consider the generation of plasma wakefields with a
300 fs �L=90 �m� laser pulse of wavelength �=1 �m
and power P=10 TW. To operate in the standard LWFA
configuration, L��p implies a density of n0�1.4
�1017 cm−3. At this density P�Pc�140 TW and the ef-
fects of relativistic guiding are unimportant. To operate
in the self-modulated regime, it is desirable that L��p
and P�Pc. Choosing a plasma density such that P
=1.5Pc implies n0�2.8�1018 cm−3 and L�4.5�p.
Hence, for this laser pulse, the self-modulated regime
can be reached by increasing the plasma density by a
factor of 20 compared to the standard LWFA configura-
tion. Furthermore, the corresponding energy gain, for
fixed interaction length, can be enhanced by nearly a
factor of 10 compared to the standard LWFA configura-
tion, as is indicated by simulations discussed below.

The advantages of the self-modulated LWFA over the
standard LWFA are simplicity and enhanced accelera-
tion. Simplicity in that a matching condition of L��p, a
preformed density channel, or special pulse tailoring are
not required. Enhanced acceleration is achieved for sev-
eral reasons. �i� The self-modulated LWFA operates at
higher density, hence a larger wakefield will be gener-
ated since Ez��n0, as indicated by Eq. �11�. �ii� Since
P�Pc, the laser pulse will tend to focus to a higher in-
tensity, thus increasing a0 and Ez. �iii� The wakefield is
resonantly excited, i.e., excited by a series of beamlets as
opposed to a single pulse as in the standard LWFA. �iv�
Relativistic optical guiding allows the modulated pulse
structure to propagate for several Rayleigh lengths, thus
extending the acceleration distance. The disadvantages
of the self-modulated LWFA are �i� at higher densities
the laser pulse group velocity �approximately equal to
the plasma wakefield phase velocity� decreases and,
hence, electron dephasing from the plasma wakefield
can limit the acceleration distance, �ii� broad energy
spread electron bunches are typically produced due to
continual trapping and short dephasing lengths com-
pared to the laser propagation distances �see Sec. IV.B�,
and �iii� the modulated pulse structure eventually dif-
fracts.

The properties of the self-modulated LWFA are illus-
trated by the following fluid simulations �Krall et al.,
1993�. For fixed laser pulse parameters, two cases will be
considered: �1� a standard LWFA in which L��p and
P�Pc and �2� a self-modulated LWFA, in which L��p
and P�Pc. The laser parameters for both these cases
are identical: a Gaussian axial intensity profile with a
pulse length L=90 �m �300 fs�, �=1 �m, a0=0.7, r0
=31 �m �in vacuum, which corresponds to ZR=3 mm�,
P=10 TW, and a pulse energy of 1.5 J. The simulation



begins at t=0 as the laser pulse enters the plasma, ini-
tially converging such that in vacuum it would focus to a
minimum spot size of r0=31 �m at ct=3ZR. The plasma
density is initially increasing, reaching full density at ct
=2ZR. The simulation continues until ct=10ZR=3 cm.
In both cases, the acceleration and trapping of a con-
tinuous electron beam with initial energy of 3 MeV and
normalized emittance �n=130 mm mrad are considered.

The electron beam is initially converging such that in
vacuum it would focus to a minimum rms radius rb
=200 �m at ct=3ZR. With such a large initial emittance,
only a small fraction ��1% � of the particles will be
trapped and accelerated.

For the standard LWFA, case �1�, the requirement L
=�p=90 �m implies a density of n0=1.4�1017 cm−3. At
this density, P�Pc=140 TW, such that relativistic guid-
ing effects are unimportant. The presence of the plasma
has little effect on the evolution of the laser pulse, which
reaches a peak intensity of 
a
2=0.56 at ct=3ZR. The
evolution of the spot size �Fig. 13� is very close to
vacuum diffraction. This is also evident in Fig. 14�a�
�dashed line�, where the peak accelerating field, plotted
versus time, is symmetric about the focus, ct=3ZR. After
ct=10ZR=3 cm, a small fraction ��0.1% � of the test
electron beam particles have been trapped and acceler-
ated. At ct=2 cm, the peak particle energy is 48 MeV,
which implies an average acceleration of 2.4 GeV/m, as
shown in Fig. 14�b� �dashed line�.

For the self-modulated LWFA, case �2�, the density is
increased such that P=1.5Pc=10 TW, which implies n0
=2.8�1018 cm−3, which is 20 times higher than in case
�1�. At this density L��p=20 �m, i.e., the laser pulse
now extends over �4.5�p. Figure 15 shows the laser in-
tensity at �a� ct=2ZR and �b� ct=3.2ZR. The axial electric
field and the plasma density response on axis at ct
=3.2ZR are shown in Figs. 16�a� and 16�b�, respectively.
The laser pulse has become modulated �three peaks are
observable, separated by �p� and the plasma wave is

FIG. 13. Ambient plasma density np /n0 �solid curve� and spot
size rs /�p �dashed curve� vs normalized propagation distance
c	 /ZR for a self-modulated LWFA with n0=2.8�1018 cm−3.
Laser is initially converging such that the minimum spot size in
vacuum is reached at c	=3ZR. From Krall et al., 1993

FIG. 14. Standard LWFA �dashed curve� with n0=1.4
�1017 cm−3 and the self-modulated LWFA �solid curve� with
n0=2.8�1018 cm−3: �a� Peak accelerating field and �b� peak en-
ergy of the injected particles vs propagation distance c	. From
Krall et al., 1993.

FIG. 15. Normalized laser intensity 
a
2 for the self-modulated
LWFA case at �a� c	=2ZR and �b� c	=3.2ZR. Laser pulse is
moving to the right. From Krall et al., 1993
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highly nonlinear. In addition, relativistic optical guiding
effects have focused the laser to a much higher intensity
than was observed in case �1�. The evolution of the laser
spot size is shown in Fig. 13 indicating that the pulse has
focused to a smaller spot size and remains guided over
�5.5ZR. A plot of the peak accelerating field versus time
�Fig. 14�a� �solid line�� shows that the highly nonlinear
fields persist as the laser pulse is optically guided. A
maximum accelerating field of �130 GV/m was ob-
tained. Because of the larger fields, a greater fraction
�2%� of the test electron beam particles were trapped
and accelerated. The peak particle energy of 430 MeV is
observed at ct=6ZR=1.8 cm. At ct=10ZR=3 cm, how-
ever, the peak particle energy has dropped to 290 MeV
due to the reduced group velocity of the laser pulse,
which causes the electrons to slip out of phase with the
wakefield and become decelerated. Figure 14�b� �solid
line� shows acceleration to 430 MeV over 1.8 cm that
gives an average gradient of 24 GeV/m. This is an order
of magnitude increase compared to the standard LWFA
of case �1�. In the above fluid simulations, the excited
plasma wave was below wave breaking E�EWB, and an
externally injected electron bunch was used. However,
in the experiments discussed below, it is possible to drive
the plasma wave in the self-modulated regime to the
wave breaking field, resulting in copious amounts of self-
trapped electrons, albeit with large energy spread.

Evidence for plasma wave generation in the high-
density self-modulated regime was first detected by
Coverdale et al. �1995�. The presence of a plasma wave
leads to the generation of Stokes and anti-Stokes lines in
the frequency spectrum of the pump laser pulse. The
first two anti-Stokes lines were observed by Coverdale et

al. �1995�, the appearance of which were correlated with
production of fast electrons, as discussed below. Subse-
quently, multiple anti-Stokes lines in the forward spec-
trum of the pump laser have been observed by several
others �Modena et al., 1995; Ting et al., 1996; Wagner et
al., 1997�. The plasma wave generation in the self-
modulated regime has been measured via coherent Th-
omson scattering with a frequency-doubled probe pulse
�Le Blanc et al., 1996; Ting et al., 1996�. The evolution of
the plasma wave was observed by varying the time delay
between the pump and probe pulses. Evidence for self-
channeling and plasma wave excitation over the length
of the channel �4 mm or 	12ZR� has also been mea-
sured via 90° Thomson scattering �Clayton et al., 1998�.

Joshi et al. �1981� detected fast electrons in an early
experiment via forward Raman scattering. A single, long
�700 ps�, CO2 laser pulse of modest intensity
�1015 W/cm2� interacting with a thin carbon foil was ob-
served to produce 1.4 MeV electrons. Electron accelera-
tion in the high-density self-modulated regime has been
observed using ultrashort pulses ��1 ps�. Nakajima et
al. �1995� observed electron acceleration to energies
�18 MeV using a 3 TW, 1 ps, 1017 W/cm2 laser pulse in
a plasma of density near 1019 cm−3. A laser-solid interac-
tion was used to produce a source of injected electrons
with energies near 1 MeV. Particle simulations sug-
gested acceleration gradients on the order of 30 GV/m.
Coverdale et al. �1995� observed 2 MeV electrons, which
were trapped and accelerated from the background
plasma, when a 600 fs, 5 TW, 8�1017 W/cm2 laser pulse
propagated in a plasma of density 2�1019 cm−3. The
generation of electrons was also correlated with the oc-
currence of anti-Stokes lines in the laser pulse spectrum,
which indicates the presence of a plasma wave. Modena
et al. �1995� demonstrated the acceleration of self-
trapped electrons to energies �44 MeV �limit of the de-
tector� using a 1 ps, 20 TW, 5�1018 W/cm2 laser pulse
in a plasma of density 1.5�1019 cm−3. A large flux of
electrons was observed �106 electrons/MeV at 44 MeV�
and the electron signal was correlated to the broadening
of the anti-Stokes lines in the laser spectrum. Estimates
based on the electron dephasing length imply an accel-
eration gradient �100 GV/m. Acceleration of self-
trapped electrons has also been observed by Wagner et
al. �1997�. The electrons were emitted in a well-
collimated bunch in the forward direction �a divergence
angle �8°� and the cross section of the bunch resembled
the shape of the cross section of the laser at focus. By
varying the laser pulse energy, a threshold for electron
acceleration was observed near P�Pc. Subsequently,
others have measured energetic electron production in
the self-modulated regime �Moore et al., 1997; Gordon et
al., 1998; Leemans et al., 2001; Malka et al. 2001�. The
plasma density dependence on the electron spectra has
been studied, and it was confirmed that the maximum
energy increased with decreasing plasma density �Malka
et al., 2001�, providing further evidence of electron ac-
celeration via plasma waves.

FIG. 16. Self-modulated LWFA case. �a� Axial electric field Ez
and �b� normalized plasma electron density n /n0 vs � at c	
=3.2ZR. From Krall et al., 1993.



Experiments have shown the importance of pulse
shape on self-modulation and electron production �Lee-
mans et al., 2002�. These experiments compared electron
production for laser pulses with slow and fast rise times.
For fast rise times the ponderomotive force is larger,
resulting in a larger initial plasma wave, which acts as
the seed for the self-modulation instability �Schroeder,
Esarey, Geddes, et al., 2003�. Seeding of self-modulation
by ionization-induced wakefields �Mori and Katsouleas,
1992; Fisher and Tajima, 1996� has been studied by Gor-
don et al. �2001�, and controlled seeding via ionization-
induced wakefields has been demonstrated experimen-
tally �Chen et al., 2004�. Experiments and simulations by
Malka et al. �2002� have explored an intermediate re-
gime between the standard and self-modulated LWFA,
in which the laser pulse is only somewhat longer than
the plasma wavelength. In this regime, the pulse under-
goes significant self-steepening, resulting in enhanced
plasma wave generation.

Another process that can contribute to acceleration in
the self-modulated regime ��p�L and P�Pc� is “direct
laser acceleration” �Pukhov et al., 1999�. In this mecha-
nism, it is necessary that the accelerated electrons un-
dergo transverse betatron oscillations. When the beta-
tron frequency �� is near the laser frequency in the
frame of the accelerated electrons, ��2���

2 /��
2 , en-

ergy can efficiently exchange between the electrons and
the transverse laser field. This is the inverse process of
the electromagnetic instability responsible for the ion
channel laser �Whittum et al., 1990�. The transverse be-
tatron oscillations are produced by transverse forces
generated by the plasma wake excitation. For example,
transverse forces can be generated from the radial struc-
ture of the plasma wave „�=�0 exp�−2r2 /r0

2�cos�kp�z
−ct�� for a Gaussian laser in the linear regime…, from
induced quasistatic magnetic fields, or, in the blow-out
regime, from the formation of an ion cavity through the
expulsion of background plasma electrons by the radial
ponderomotive force of the laser. In the blow-out re-
gime the electrons oscillate with the betatron frequency
����p / �2��1/2 �Esarey et al., 2002�. Gahn et al. �1999�
reported multi-MeV electrons accelerated by a 1.2 TW,
200 fs laser pulse channeling in a high-density
�1020 cm−3� plasma and attributed the dominant accel-
eration process to direct laser acceleration.

E. Blow-out regime

In the mildly relativistic wakefield regime �a2�1�, the
wakefield can be described analytically in three dimen-
sions using plasma fluid theory, as in Sec. II.B, which is
valid provided that the perturbed fluid quantities remain
small �e.g., the perturbed density 
�n
�n0�. In the high-
intensity limit �a2�1�, the wakefield can be modeled
analytically in the 1D limit �broad pulse kpr0
1�, as in
Sec. II.C. However, for a radially bounded pulse in three
dimensions �kpr0�1� in the high-intensity limit, the
wakefield must typically be modeled numerically. For a
bounded pulse in three dimensions, as the intensity in-

creases, the wakefield structure can depart significantly
from the sinusoidal form described by linear theory. In
addition to wave steepening and period lengthening,
which occur in the 1D limit, the radial structure of the
wake can exhibit nonlinearities. One such effect is that
the wave front of the plasma wave can be curved, as
described in Sec. II.C. The greater the distance behind
the driver, the more severe the curvature becomes, as a
result of the nonlinear plasma wavelength being greater
on axis �where the wake amplitude is high� than off axis.
Another effect is that the laser intensity can be suffi-
ciently high so as to completely expel all plasma elec-
trons from the vicinity of the axis �Mora and Antonsen,
1996; Pukhov and Meyer-ter-Vehn, 2002; Lu, Huang,
Zhou, Tzoufras, et al., 2006�. This high-intensity 3D re-
gime has been referred to as the blow-out, bubble, or
cavitation regime. In addition to electron cavitation, a
fraction of the plasma electrons can become self-trapped
in the ion cavity and can be accelerated to high energies
�Faure et al., 2004; Geddes et al., 2004; Mangles et al.,
2004�.

This regime of complete expulsion of the plasma elec-
trons from some region about the axis has been studied
for both laser �Pukhov and Meyer-ter-Vehn, 2002� and
electron beam drivers �Rosenzweig et al., 1991� �referred
to as a nonlinear plasma wakefield accelerator �PWFA��.
For electron beam drivers, the blow-out regime was first
analyzed by Rosenzweig et al. �1991�, and, more recently,
nonlinear PWFA experiments have been performed at
the Stanford Linear Accelerator Center �SLAC� using
the 30–40 GeV electron beam to drive plasma waves
�Hogan et al., 2000, 2005�. In the blow-out regime of the
PWFA �nb /n0�1, kp�z�1, and kp�r�1, where �z and
�r are the axial and radial bunch lengths, respectively�,
all plasma electrons can be expelled from the vicinity of
and immediately behind the driver. The blow-out region
of the wake is characterized by an accelerating field that
is constant as a function of radius and varies linearly as a
function of distance behind the driver and a focusing
field that is linear as a function of radius. This regime
can have beneficial accelerating properties, e.g., because
the focusing forces are linear; the normalized emittance
of an accelerated electron bunch will be preserved. In
the experiments at SLAC, the blow-out wake has led to
an energy gain of more than 40 GeV for a fraction of the
electrons in the tail of the bunch �Blumenfeld et al.,
2007�. The majority of electrons in the body of the
bunch lost energy, which represents the energy needed
to generate the plasma wave.

The focusing force of the cavitated or blow-out region
can be very large. For example, the radial space charge
field of a long ion channel is Er=E0�kpr /2� �Rosenzweig
et al., 1991�. At the edge of an electron beam with radius
�r, this can be written in convenient units as

Er�MV/m� � 9.06 � 10−15n�cm−3��r��m� . �47�

This radial force will cause a relativistic electron with
�
1 to perform betatron oscillations about the axis with
a betatron wavelength ��= �2��1/2�p �Esarey et al., 2002�.
The rms radius of a highly relativistic electron bunch will



evolve via d2�r /dz2+k�
2�r−�n

2 /�2�r
3=0, where �n is the

normalized beam emittance, assuming linear focusing
forces and neglecting beam space charge, energy spread,
and acceleration. Here k�

2 =eEr /�mec
2r, e.g., k�=2� /��

=kp /�2� in the blow-out regime. The condition for the
bunch to be matched �propagates at constant bunch ra-
dius �rm� in such a focusing channel is �rm= ��n /�k��1/2.
For example, n0=1017 cm−3 ��p=100 �m�, �=1000, and
�n=1 mm mrad give ��=4.7 mm, �rm=0.86 �m, and
Er��rm�=780 MV/m.

One consequence of betatron motion of a relativistic
electron in the plasma focusing fields is the emission of
betatron �i.e., synchrotron� radiation �Wang et al., 2002;
Esarey et al., 2002; Kostyukov et al., 2003; Rousse et al.,
2004�. This radiation is characterized by the betatron
strength parameter a�=�k�r�, which is analogous to the
undulator strength parameter in conventional synchro-
trons, where r� is the betatron orbit amplitude. The ra-
diation frequency on axis is �=2�2Nhck� / �1+a�

2 /2�, as-
suming �2
1+a�

2 /2, where Nh is the harmonic number
�Esarey et al., 2002�. For a�

2 �1, emissions occur prima-
rily at Nh=1. For a�

2 
1, emission occurs in a multitude
of harmonics with the maximum intensity occurring near
the critical harmonic Nc�3a�

3 /4. Note that a� varies
throughout an electron beam, e.g., an electron propagat-
ing along the axis has r�=0 and an electron at the beam
edge has the maximum r�. As the beam radiates, the
mean energy decreases and the normalized energy
spread can increase �Michel, Schroeder, et al., 2006�. For
plasma accelerators, a� can be large and the radiation
can extend into the hard x-ray regime. Betatron radia-
tion has been observed in the blow-out regime for both
electron beam-driven �Wang et al., 2002; Johnson et al.,
2006� and laser-driven �Rousse et al., 2004; Ta Phuoc et
al., 2006� wakes.

Assuming a spherical ion cavity of radius rB �centered
at r=0 and �=0 �, moving at relativistic velocities, the
axial electric field Ez, radial electric field Er, and azi-
muthal magnetic field B� within the cavity are �Ko-
styukov et al., 2004; Lu, Huang, Zhou, Tzoufras, et al.,
2006�

Ez � �kp�/2�E0, �48�

Er � �kpr/4�E0, �49�

B� � − �kpr/4�E0. �50�

The axial electric field is maximum when ��rB. The
transverse wakefields are electromagnetic such that the
radial focusing force on a highly relativistic electron
moving along the axis is Fr=Er−B�= �kpr /2�E0, i.e., an
effective focusing field given by Eq. �47�.

An example of an electron beam driven wake in the
blow-out regime is shown in Fig. 17, which shows the
spatial plasma density response to an electron beam
with energy 0.5 GeV, density nb=5n0, and rms longitu-
dinal and transverse beam sizes kp�z=kp�x=kp�y

=1/�2 �Gaussian profiles�, propagating in an initially

uniform plasma of density n0=5�1017 cm−3 �the elec-
tron beam is moving toward the right�. These electron
beam parameters are similar to those produced by LPA
experiments at Lawrence Berkeley National Laboratory
�LBNL� �Leemans, Nagler, et al., 2006�. Figure 17 was
obtained using a modified version of the PIC code PSC
�Ruhl, 2000� in three dimensions using four particles per
cell and transverse and longitudinal cell sizes of 0.7 �m.
In Fig. 17, the beam has pinched to nb�10n0 with nb�r

2

approximately equal to the initial value. Behind the
electron beam, the cavitated region extends out to a ra-
dius kprB�3, which is much larger than the electron
beam radius and somewhat smaller than that predicted
by theory �Lu et al., 2005�, kbrB�2��b�4.5, where �b

= �nb /n0�kp
2�r

2=5.
For laser drivers, plasma blowout can occur in many

regimes, including the long pulse self-modulated regime
�Sun et al., 1987; Kurki-Suonio et al., 1989; Sprangle et
al., 1992; Mora and Antonsen, 1996� and the short-pulse
LWFA regime �Pukhov and Meyer-ter-Vehn, 2002; Ko-
styukov et al., 2004; Gordienko and Pukhov 2005; Lu,
Huang, Zhou, Mori, et al., 2006, 2007; Lu, Huang, Zhou,
Tzoufras, et al., 2006�. For example, for a long laser
pulse with a slowly varying axial profile �Sun et al., 1987�,
the plasma density profile is determined by balancing
the radial ponderomotive force with the space charge
force. The plasma density in the long pulse adiabatic
limit is then given by

n/n0 = 1 + kp
−2��

2 �1 + a2�1/2, �51�

assuming circular polarization. For a Gaussian pulse
profile, a2=a0

2 exp�−2r2 /r0
2�, the on-axis �r=0� density is

n�0� /n0=1− �4/kp
2r0

2�a0
2 / �1+a0

2�1/2. This indicates that
complete blowout of the plasma electrons, n�0�=0, oc-
curs for a laser intensity satisfying

FIG. 17. �Color� Electron density wake from an electron beam
with energy 0.5 GeV, peak density nb=5n0, and rms beam
sizes kp�x=kp�y=kp�z=1/�2 �Gaussian profiles�. The electron
beam is moving toward the right with its center located at
kpz=62.5 in a plasma of density n0=5�1017 cm−3. Numerical
parameters: four particles per cell and cell size �in all direc-
tions� of 0.7 �m.



a0
2/�1 + a0

2�1/2 � kp
2r0

2/4. �52�

In the high-intensity limit a0
2
1, blowout requires a0

�kp
2r0

2 /4 or, alternatively, a spot size r0� �2/kp��a0. To
cavitate the electrons out to a larger radius requires
larger intensity. For example, a blow-out region of r
=r0 /�2 requires a0=0.82kp

2r0
2, assuming a0

2
5.4.
For a short �L��p� intense �a2�1� pulse, i.e., an

LWFA in the highly nonlinear regime, the generation of
a large amplitude wake can occur simultaneously with
plasma cavitation in a manner analogous to that of an
electron beam driver in the PWFA. Laser cavitation was
studied by Mora and Antonsen �1996� for laser intensi-
ties in the range a0=0.25–3, spot sizes kpr0=4–16, and
pulses lengths kpL�10 using a quasistatic time-averaged
particle code. Mora and Antonsen �1996� observed self-
steepening, pulse compression �to kpL�2�, self-focused
propagation up to 30ZR through an initially uniform
plasma, and complete cavitation �blowout� of electrons
from the region of the laser pulse with the formation of
a highly nonlinear wake. Self-trapping of relativistic par-
ticles in the wake was also observed.

An example of a cavitated wake driven by a short
laser pulse in the mildly relativistic regime �a0

2�1� is
shown in Fig. 18. Figure 18 shows the spatial plasma
density response to a linearly polarized laser pulse with
a0=0.3, rms length 68 �m, and spot size r0=10 �m
�Gaussian spatial profiles�, propagating in an initially
uniform plasma of density n0=1.2�1016 cm−3 �plasma
wavelength �p=300 �m�. The laser is moving toward the
right �peak laser field located at kpz=7�. Figure 18 was
obtained using a time-averaged version of the PIC code
PSC in three dimensions using four particles per cell,
with transverse resolution dx=dy=0.33 �m and longitu-
dinal resolution dz=3.125 �m. The above laser-plasma
parameters satisfy a0�kpr0 /2, Eq. �52� with a0�1. The
radius of the cavitated region behind the laser is kprB

�0.23 and is near that of the laser spot size kpr0=0.21.
Laser blowout with short �L��p�, ultraintense �a2


1� pulses was studied using PIC simulations and theo-
retical modeling by Pukhov and Meyer-ter-Vehn �2002�
and Lu, Huang, Zhou, Tzoufras, et al. �2006�. Gordienko
and Pukhov �2005� presented a similarity theory in
which the wake is characterized by the similarity param-
eter S=kp

2 /a0k2. They find that optimal wake generation
occurs for a laser spot radius of kpr0	�a0, a pulse length
L=c	�r0, and a power P�GW��30�	�fs� /���m��2. Fur-
thermore, they predicted an acceleration length Lacc
	0.7�L /��ZR and the formation of a quasimonoener-
getic electron bunch with energy W
	0.22�L /���P�GW��1/2mec

2. Gordienko and Pukhov
�2005� gave simulation examples with a0=10–80. For the
a0=80 case �1.5 kJ pulse energy�, a quasimonoenergetic
electron peak was observed at 12 GeV after a propaga-
tion length of 7200�.

An analytic theory of wake generation in the blow-out
regime was also developed by Lu, Hung, Zhou, Tzou-
fras, et al. �2006�. In the high-intensity limit �a0�4�, they
find that wake generation is optimal when the laser spot
size satisfies kpr0	2�a0. In this case, they predicted that
the dimension of the blow-out region or bubble is ap-
proximately a sphere with a radius rB��2/kp��a0, which
is similar to the result obtained from balancing the radial
ponderomotive force with the space charge force. The
diameter of the bubble is approximately equal to the 1D
nonlinear plasma wavelength �Eq. �25��, �Np

��2/���Emax/E0��p��2�a0 /���p, where Emax is the
maximum electric field amplitude of the wake. The axial
electric field is maximum when ��rB, i.e., from Eq. �48�,
Emax��a0E0. To be in this spherical blow-out regime
requires �Lu, Huang, Zhou, Mori, et al., 2006; Lu,
Huang, Zhou, Tzoufras, et al., 2006� a laser power
P�GW��21.5�a0rB /��2 or P��a0

3 /8�Pc with a0�4,
where Pc is the critical power for relativistic self-
focusing. For laser powers in the range 15�P
�100 TW, reaching the blow-out regime requires
plasma densities in the range 2�1019�n�2
�1018 cm−3 �Lu, Huang, Zhou, Mori, et al., 2006; Lu,
Huang, Zhou, Tzoufras, et al., 2006�. PIC simulations
also indicated that electrons can be self-trapped in the
trailing edge of the blow-out region and accelerated up
to relativistic energies.

An example of a blow-out wake driven by a short
laser pulse in the highly relativistic regime �a0

2
1� is
shown in Figs. 19–21, which shows the spatial plasma
density response �Fig. 19� and the spatial profiles of the
longitudinal �Fig. 20�a�� and transverse �Fig. 20�b�� elec-
tric fields after propagating �pt=27.7 �the center of the
laser pulse is at kpz=17.6�. Also shown are line outs of
the longitudinal electric field on axis as a function z �Fig.
21�a�� and the transverse electric field at kpz=13 as a
function of x �Fig. 21�b�� at �pt=27.7. The initial laser
pulse envelope is a=a0 exp�−z2 /2L2�exp�−r2 /r0

2�, with
a0=5, L=4.2 �m, r0=9 �m, and �=0.8 �m. The laser
enters the plasma of density n0=7�1018 cm−3 ��p

FIG. 18. �Color� Electron density wake driven by a laser pulse
with a0=0.3, rms length 68 �m �Gaussian longitudinal profile�,
and spot size r0=10 �m �Gaussian transverse profile�. The la-
ser is moving toward the right �peak located at kpz=7� in a
plasma density n0=1.2�1016 cm−3 ��p=300 �m�. Numerical
parameters: four particles per cell, transverse resolution dx
=dy=0.33 �m, and longitudinal resolution dz=3.125 �m.



=12 �m� and propagates to the right. These results were
obtained using a modified version of the PIC code PSC in
three dimensions with longitudinal cell size dz
=0.03 �m, transverse cell size dx=dy=0.7 �m, and four
particles per cell. For these laser-plasma parameters,
kpr0	2�a0. As can be seen in Fig. 21, near the center of
the cavity Ez is approximately a linear function of z and
Ex is approximately a linear function of x. Furthermore,
the amplitudes of Ez and Ex are comparable, excluding
the spike in Ez that occurs near the back of the cavity.

According to the theoretical descriptions of the blow-
out regime �Kostyukov et al., 2004; Lu, Huang, Zhou,

Mori, et al., 2006� the example presented in Figs. 19–21
should produce a near spherical bubble �with radius
kprB	2�a0=4.5�. From Fig. 19, the cavitated region is
elliptical with a blow-out radius of kprB�3 �the peak
density n /n0�8 is at kpr�3.7� for kpz=12, kprB�4 �the
peak density n /n0�2.5 is at kpr�4.5� for kpz=13, and a
peak density n /n0�1.5 at kpr�5.5 �here the blow-out
radius is not well defined since the cavity “walls” are
becoming broad� for kpz=15. For later times, the laser
pulse evolves and distorts leading to a cavitated region
with significantly larger dimensions, even though the
peak laser intensity is only slightly different than earlier
times. One reason that the cavity has expanded is that
the laser has steepened and shortened, and even though
the peak laser field is approximately the same in Fig. 19,
the ponderomotive force is larger due to the larger gra-
dients in the steepened intensity profile. Since the pon-
deromotive force depends on both the laser intensity
amplitude and gradient scale length, so should the prop-
erties of the wake, and this behavior is not captured by
the simple scaling law kprB	2�a0, which does not in-
clude the effect of the laser intensity gradient scale
length or the laser pulse length.

Simulations �Kostyukov et al., 2004; Lu, Huang, Zhou,
Mori, et al., 2006� also indicate that at later times a
trapped and accelerated electron bunch is evident within
the blow-out region. These electrons are self-injected
near the back of the cavity. The wakefield associated
with the trapped bunch can lead to beam loading, which
can distort and elongate the blow-out region. Examples
of this cavity distortion are presented in Sec. VII.A.

F. Other laser wakefield acceleration regimes

Excitation of large plasma wakefields by laser pulses
can be divided roughly in two categories. A “standard”
regime in which the laser intensity is sufficiently high
�a0�1� and the laser pulse is sufficiently short �or the
gradients in the axial intensity profile are sufficiently

FIG. 19. �Color� Electron density wake at �pt=27.7 driven by
a laser pulse with an initial envelope given by a
=a0 exp�−z2 /2L2�exp�−x2 /r0

2� with a0=5, L=4.2 �m, r0=9 �m,
and �=0.8 �m. The laser is propagating to the right in a
plasma of density n0=7�1018 cm−3. Numerical parameters:
longitudinal cell size dz=0.03 �m, transverse cell size dx=dy
=0.7 �m, and four particles per cell.

FIG. 20. �Color� Wakefields driven by a laser pulse with a
=0.5 in the blow-out regime. �a� Longitudinal electric field and
�b� transverse electric field, normalized to E0, as a function of
kpz and kpx, for the parameters of Fig. 19 at �pt=27.7.

FIG. 21. Lineouts of �a� longitudinal electric field on axis �b�
and transverse electric field at kpz=13 for the parameters of
Fig. 19 at �pt=27.7.



short�, L��p, such that the initial laser pulse profile im-
mediately drives a large plasma wave. In the standard
regime, pulse evolution is not required to excite a large
wakefield. The other general category is the “self-
modulated” regime, typically denoted from the standard
regime by longer pulses of lower intensities. In the self-
modulated regime, the initial laser profile does not im-
mediately drive a sufficiently large wakefield, and evolu-
tion of the laser pulse is necessary to excite a large
plasma wave. Pulse evolution is the result of the initial
plasma density perturbation acting back on the laser
pulse, such as in the case of the forward Raman or self-
modulation instabilities. Although, for some intensity
ranges, the standard and self-modulated regimes may
correspond to short and long pulse regimes, respectively,
there are many intermediate regimes in which self-
modulation of the laser pulse by the plasma wave is the
dominant mechanism, and some of these regimes have
been referred to as “pseudo-resonance” �Kimura et al.,
2005� or “forced” laser wakefield regimes �Malka et al.,
2002�. It should be noted that the experimental evidence
for the forced laser wakefield regime based on optical
spectra is controversial as it was reported that the spec-
trum blueshifts �Malka et al., 2002� counter to energy
conservation �pump depletion� expectations.

The precise evolution of both the laser pulse and the
plasma wave, however, depends on the precise laser and
plasma parameters. Pulse evolution, via the feedback of
the plasma wave on the pulse, will eventually play a sig-
nificant role in the wakefield evolution in all regimes.
Nonlinear effects such as pump depletion and pulse self-
steepening will always occur if the laser pulse is allowed
to propagate a sufficiently long distance, which affects
both the laser profile and the wakefield amplitude.

G. Acceleration limits and scaling laws

Several mechanisms can limit the energy gain in an
LPA: laser diffraction, electron dephasing, pump deple-
tion, and laser-plasma instabilities. In vacuum a laser
pulse undergoes Rayleigh diffraction, i.e., the laser spot
size evolves according to rs=r0�1+z2 /ZR

2 �1/2, where r0 is
the minimum spot size at the focal point z=0 and ZR

=kr0
2 /2 is the Rayleigh length. Without some form of

optical guiding, the laser-plasma interaction distance will
be limited to a few ZR. Various methods for optical guid-
ing, such as using a plasma density channel, are dis-
cussed in Sec. V. Electron dephasing, i.e., a highly rela-
tivistic electron outrunning the plasma wave, can limit
the energy gain to a dephasing length Ld, as discussed in
Sec. II.E. As the laser driver excites a plasma wave, it
loses energy, i.e., its pump depletes �Horton and Tajima,
1986; Ting et al., 1990; Bulanov et al., 1992; Teychenné et
al., 1994a�. The pump depletion length Lpd can be esti-
mated by equating the laser pulse energy to the energy
left behind in the wakefield, Ez

2Lpd�EL
2 L, where EL is

the laser field.
As an illustration, consider a standard LWFA driven

by a linearly polarized square profile laser pulse with

L��Np /2 in the 1D limit. The dephasing and pump
depletion lengths are given by �Esarey et al., 2004; Shad-
wick et al., 2009�

Ld �
�p

3

2�2 � �1 for a0
2 � 1

��2/��a0/Np for a0
2 
 1,

� �53�

Lpd �
�p

3

�2 � �2/a0
2 for a0

2 � 1

��2/��a0 for a0
2 
 1,

� �54�

where Np is the number of plasma periods behind the
drive laser pulse. In Eq. �53�, the factor of �p

3 / �2�2� is
from requiring a highly relativistic electron �traveling at
c� to phase slip by �p /4 �since only 1/4 of a plasma wave
period is both accelerating and focusing�. In the a0

2
1
limit of Eq. �53�, the factor 1/Np is from the plasma
wave period increasing as the laser pulse steepens, which
is the dominant effect in determining the plasma wave
phase velocity in the nonlinear limit. Furthermore, it can
be shown �Esarey et al., 2004� that, initially, the spatial
rate at which the laser pulse energy changes scales as
−1/Lpd �pump depletion�, the rate at which the mean
frequency changes scales as −1/Lpd �redshifts� and rate
at which the mean laser intensity changes scales as 1/Lpd
�pulse steepens�.

As an example, consider the linear regime with the
parameters a0=0.3, �=0.8 �m, and r0=�p=33 �m �P
=3.3 TW and n0=1018 cm−3�. The relevant propagation
lengths are ZR=0.43 cm, Ld�2.8 cm, and Lpd�1.2 m,
i.e., ZR�Ld�Lpd. Furthermore, since Ld�n0

−3/2 and
Lpd�n0

−3/2, the dephasing length and pump depletion
lengths can be increased by operating at lower densities.
Since L��p in the standard LWFA, lower densities cor-
respond to longer laser pulse durations L�n0

−1/2. In prin-
ciple, a static magnetic field can be introduced to reduce
dephasing �Katsouleas and Dawson, 1983�. Use of an
active medium has also been proposed as a method for
reducing pump depletion �Fisher et al., 1995�.

In the linear regime �a0
2�1�, Ld�Lpd and the electron

energy gain is limited by dephasing, not pump depletion,
assuming an axially uniform plasma. However, by appro-
priately tapering the axial plasma density profile,
dephasing limitations can be overcome, resulting in a
larger single-stage energy gain �Katsouleas, 1986;
Sprangle et al., 2001�. By slowly increasing the plasma
density as a function of propagation distance, the phase
velocity of the wakefield can be increased, as is de-
scribed in Sec. IV.D. In principle, an axial density taper
can be found for which vp=c at some point behind the
drive laser pulse. However, slippage between the bunch
�ve�c� and the drive laser �vg�1−�p

2�z� /2�2�c� limits
the length over which tapering is possible, and infinite
densities are eventually required. Injecting a bunch sev-
eral plasma periods behind the laser will extend the dis-
tance over which one can taper. Appropriate tapering
may mitigate dephasing such that acceleration will be
limited by pump depletion, Lpd���p

3 /�2�a0
−2.

In the nonlinear regime �a0
2�1�, Ld�Lpd and no den-

sity tapering is needed since the electron energy gain is



limited by pump depletion, not dephasing. In particular,
the regime a0

2�1, such that Ld�Lpd, has advantages
over the linear regime. In addition to not requiring den-
sity tapering, a single channel-guided stage with a0

2�1
results in higher accelerating gradients, shorter channel
lengths, and efficient depletion of the laser pulse energy
while yielding comparable energy gains.

The ideal energy gain in a standard LWFA can be
estimated by W=eEzLacc, where Lacc is the accelera-
tion length and Ez=E0�a0

2 /2��1+a0
2 /2�−1/2 is the maxi-

mum electric field amplitude driven by an optimized
flat-top, linearly polarized laser pulse in the 1D limit
�Esarey et al., 2004; Leemans, Esarey, et al., 2006�. If the
acceleration distance is limited by diffraction, Lacc
��ZR�Ld ,Lpd, the energy gain in practical units is

WR�MeV� � 740��/�p��1 + a0
2/2�−1/2P�TW� . �55�

If the acceleration distance is limited by dephasing,
Lacc�Ld, the energy gain is

Wd�MeV� �
630I�W/cm2�

n�cm−3�
� �1, a0

2 � 1

�2/��/Np, a0
2 
 1.

�
�56�

If the acceleration distance is limited by depletion, Lacc
�Lpd /2, the energy gain is

Wpd�MeV�

� �3.4 � 1021/��2��m�n�cm−3�� , a0
2 � 1

400I�W/cm2�/n�cm−3� , a0
2 
 1.

� �57�

These estimates are based on the idealized assumptions
stated above and neglect various nonideal effects, such
as self-focusing and laser-plasma instabilities. Self-
focusing, guiding, and various instabilities are discussed
later in this article.

Fluid simulations have been carried out in one and
two dimensions for a channel-guided LWFA �kpr0�1� in
the standard regime, including the nonlinear evolution
of the laser pulse and wake, and the effects of dephasing
and depletion �Esarey et al., 2004; Shadwick et al., 2009�.
It is found that for a Gaussian laser pulse with kpLrms
=1 and a0�1−2, the energy gain is Wf�MeV�
�350I�W/cm2� /��n�cm−3�, where ��= �1+a0

2 /2�1/2. The
dephasing length is found to be kpLd�Cd��p /��2, with
Cd	4 for a0=1 and Cd	3 for a0=2. As an example, a
40 J laser pulse with P=380 TW, a0=2, �=0.8 �m, r0
=53 �m, and Lrms=12.5 �m, propagating in a plasma
with �p=80 �m �n0=2�1017 cm−3�, produces an energy
gain of Wf=10 GeV over a dephasing length of Ld
=40 cm.

The above scaling laws for Wd and Wpd apply to an
LWFA in the standard configuration �L��p� with a
broad laser pulse �kp

2r0
2
1� propagating in a density

channel that provides guiding. For sufficiently high pow-
ers P
Pc, it may be possible to guide the laser pulse
over multiple ZR without the use of a density channel
due to a combination of relativistic self-focusing and
ponderomotive self-channeling. This is the case in the

blow-out or bubble regime �Pukhov and Meyer-ter-
Vehn, 2002�. Assuming that the energy gain is limited by
dephasing with a0�1 again implies Wd�MeV�
�0.9�kpr0�−2P�GW�, using Eq. �56�, only now with the
additional constraint P
Pc.

Scaling laws for the energy gain in the highly non-
linear blowout regime have been obtained through
analytical and numerical studies �see also Sec.
III.E�. For example, Gordienko and Pukhov �2005�
obtained WGP�MeV��0.1�c	L /���P�GW��1/2. Al-
ternatively, Lu et al. �2007� found WL�MeV�
�0.25��p /��4/3�P�GW��1/3. To be in these regimes, how-
ever, require pulse lengths c	L��p and laser powers
greater than the critical power for relativistic self-
focusing, P�Pc. It is interesting to note �Leemans,
Esarey, et al., 2006� that by letting c	L=Rp�p and P
=RcrPc, then WGP�MeV��0.03RpRcr

−1/2P�GW� and
WL�MeV��0.04Rcr

−2/3P�GW�. For many regimes of in-
terest, e.g., Rp�1 and Rcr�1−10, WGP and WL yield
similar results.

Although W is limited by depletion and dephasing
for both a channel-guided LWFA or a self-guided LWFA
with P
Pc, there may be additional advantages to using
a channel over relying on self-guiding. One obvious dif-
ference is that the additional constraint P
Pc needs not
be satisfied when using a channel. This implies that the
channel-guided LWFA may be operated at lower inten-
sities �lower a0�, which may be a more stable regime.
The channel may also provide some resistance to insta-
bilities, such as the laser-hose instability. Without a chan-
nel, the laser pulse will be subject to some amount of
diffractive erosion since the head of the pulse will not be
self-guided, which can limit the propagation distance.
For example, if the pulse is self-guided for a distance of
L=RRZR, where RR
1 is the number of Rayleigh
lengths, then pulse erosion will limit the energy gain and
not dephasing when RRZR�Ld or RR�kpr0�3

�3.8�P�GW��1/2 for q�1. Last, it is hoped that by oper-
ating a channel-guided LWFA in the “dark-current-free”
mode �no self-trapping�, a high-quality electron bunch
can be obtained by injecting a low energy spread, low
emittance bunch into the LWFA, allowing staging of
multiple LWFA modules. If the LWFA is to be operated
in a highly nonlinear self-guided mode �i.e., the blow-out
or bubble regime�, it may not be possible to operate in
this regime without self-trapping, which may limit the
energy spread and emittance of the accelerated bunch.

H. Beam loading

A relativistic charged particle bunch moving through
a plasma can excite wakefields in a manner similar to
that of an intense laser pulse. For a laser driver, the
ponderomotive force expels plasma electrons and ini-
tiates a plasma wave �or wake�. For a relativistic elec-
tron bunch, the space charge force of the bunch �with a
relativistically large mass� displaces plasma electrons
�with a relativistically lighter mass� and initiates a wake.
For a narrow beam ��r��p, where �r is the transverse



beam size�, the larger the charge in the bunch, the larger
the wake is. In a plasma-based accelerator, the wake
from the accelerated bunch will be out of phase with,
and thus reduce, the wake generated by the drive beam.
The process by which the wake produced by the accel-
erated bunch significantly modifies the fields of the ac-
celerating plasma wave is referred to as beam loading.
Beam loading can place severe limitations on the beam
current that can be accelerated, the quality of the accel-
erated particle bunch, and the efficiency of the plasma-
based accelerator.

The wakefield generated by a relativistic electron
bunch moving through a plasma can be calculated using
linear perturbation theory of the cold plasma fluid and
Maxwell equations �Katsouleas et al., 1987; Keinigs and
Jones, 1987; Lu et al., 2005�. The normalized density per-
turbation �n /n0�1 and normalized axial electric field
Ez /E0�1 driven in an initially uniform plasma by a
short electron bunch �with number density nb� are given
by

� �2

��2 + kp
2��n

n0
= − kp

2 nb

n0
, �58�

���
2 − kp

2�
Ez

E0
= − kp

�

��

�n

n0
, �59�

assuming the quasistatic approximation and a highly
relativistic beam, �e�1, where c�e is the electron bunch
velocity. Solving Eqs. �58� and �59� for a cylindrically
symmetric beam yields

Ez/E0 = − kp
3�

�

�

d���
0

�

dr�r� cos�kp�� − ����

�I0�kpr��K0�kpr��nb�r�,���/n0, �60�

where I0 and K0 are the zeroth-order modified Bessel
functions of the second kind and r� �r�� denotes the
smaller �larger� of r and r�, respectively. An electron
bunch will excite a plasma wave provided that the length
scale of the axial gradients in the bunch profile �e.g., the
bunch length� is comparable to or shorter than the
plasma period, e.g., kp�z�1, where �z is the bunch
length. Furthermore, the wakefields from a narrow
bunch with radius �kp

−1 will extend out to a radius �kp
−1.

For a drive electron bunch with Gaussian axial profile
of the form  ���=nb exp�−�2 /2�z

2�, the amplitude of the
axial electric field is given by

Ez/E0 = �2��1/2�nb/n0�kp�z exp�− kp
2�z

2/2�HR. �61�

Note that the wakefield amplitude is maximum when
kp�z=1. Here HR depends on the radial bunch profile.
For a flattop radial profile,  �r�=nb for r�rb and zero
otherwise,

HR�r� = �1 − kprbK1�kprb�I0�kpr� for r � rb

kprbI1�kprb�K0�kpr� for r � rb
� �62�

with I1 and K1 the first-order modified Bessel functions.
For a wide beam kprb
1, HR�0��1 and for a narrow

beam kprb�1, HR�0���kp
2rb

2 /2��0.62−ln�kprb��. Note
that for a Gaussian radial profile,  �r�=nb exp�−r2 /2�r

2�,

HR�0� = �kp
2�r

2/2�exp�kp
2�r

2/2�!�0,kp
2�r

2/2� �63�

on axis with ! the incomplete gamma function. Equation
�63� reduces to HR�0���kp

2�r
2��0.058−ln�kp�r�� assuming

kp�r�1.
Particle-in-cell simulations �Lu et al., 2005� indicate

that a pseudolinear expression for the wakefield holds as
the linear wake transitions into the blow-out regime.
Specifically, in the regime kp�z��2, kp�r�1, and �b
�1, the wakefield is given by the above linear expres-
sions if nb /n0�10 and by Ez /E0�1.3�b ln��b /10�−1/2 if
nb /n0�10, with a blow-out radius of kprB�2��b, where
�b= �nb /n0�kp

2�r
2.

The maximum number of bunch electrons that can be
loaded into a small ���p� axial segment of a linear
wakefield for acceleration �i.e., the number of electrons
required to produce a wakefield that will cancel the ac-
celerating field, which defines the beam loading limit� is
�Katsouleas et al., 1987�

Nmax =
n0Ab

kp

Ez

E0
� 5 � 105Ez

E0
Ab�cm2��n0�cm−3� ,

�64�

assuming kp�z�1 and Ez /E0�1, where Ab
� /kp
2 is the

cross-sectional area of the bunch �for kp�r�1, Ab be-
comes of order kp

−2�. For an unshaped symmetric bunch
�e.g., a Gaussian axial profile� containing N electrons,
the wake-induced energy spread scales as N /Nmax and
the efficiency of converting wake energy to electron en-
ergy scales as �N /Nmax��2−N /Nmax�. As N approaches
Nmax the efficiency approaches 100%, but the energy
spread becomes large, also approaching 100%.

The energy spread induced on the loaded bunch can
be reduced by shaping the bunch profile �Katsouleas et
al., 1987�. Linear theory predicts that for a bunch with
triangular axial profile �high charge in front�, the wake-
field inside the bunch can be made constant, thus elimi-
nating energy spread. For Nmax�2 cos kp�b�−1 sin2 kp�b

particles in the shaped bunch �of length kp
−1 tan kp�b�, the

axial field inside the bunch is Ez cos kp�b, and the effi-
ciency is sin2 kp�b, where �b is the phase location of the
front of the bunch. For example, if a triangular bunch is
loaded at kp�b=� /3 with length �3/kp, then 0.75Nmax
particles can be accelerated by a field of 0.5Ez with an
efficiency of 75%, and no wake-induced energy spreads.
This neglects slippage effects between the bunch and the
wakefield and transverse variations in the wakefield,
which can lead to finite energy spreads.

Estimates for the beam loading limit have been given
for laser-driven wakefields in the blow-out regime �Gor-
dienko and Pukhov, 2005; Lu et al., 2007�. For example,
Lu et al. �2007� found Nmax��kprB�3 /30kpre, which gives
Nmax�3.1�109�0��m��P�TW��1/2, assuming a blow-out
radius of kprB�2�a0 and a laser spot size r0�rB. Notice
that a similar result can be obtained from the linear ex-
pression for Nmax �Eq. �64�� by assuming Ab�rB

2 and



Ez /E0�kprB /4, which gives Nmax��kprB�3 /16�kpre.
Gordienko and Pukhov �2005� found Nmax�1.1
�109�0��m��P�TW��1/2. The efficiency was estimated to
be in the range of ten to a few tens of percent �Gordi-
enko and Pukhov, 2005; Lu et al., 2007�.

IV. ELECTRON TRAPPING AND INJECTION

A. Trapping and dark current

The dynamics of an electron in the presence of a
plasma wave and a laser pulse is determined by the
Hamiltonian in the comoving frame H= ���

2 + p̃2�1/2

−�pp̃−�, as discussed in Sec. II.E. The orbit of an elec-
tron with initial normalized momentum p̃t will be de-
fined by H= �1+ p̃t

2�1/2−�pp̃t=Ht. Trapping of the elec-
tron will occur when the orbit defined by Ht coincides
with a trapped orbit, defined as lying with the separatrix
orbit �defined by Hs�, i.e., when Ht�Hs. Solving Ht
=Hs yields in the minimum initial electron momentum
for trapping in the plasma wave �Schroeder et al., 2006�,

p̃t = �p�p��� − �p�min� − �p���� − �p�min�2 − 1�1/2,

�65�

where �min is the minima of the plasma wave potential.
Figure 22 shows the initial momentum p̃t required for
the electron to be trapped by a plasma wave with ampli-

tude Êm=Emax/E0, with ��=1 for a warm plasma �i.e.,
solving Eq. �27� for the plasma wave potential� with
�th

2 =kBT0 /mc2=10−4. The threshold momentum re-
quired for trapping decreases for larger plasma wave
amplitude and for lower plasma wave phase velocity.
Curvature of the plasma wave fronts in two dimensions
can enhance trapping into the focusing and accelerating
regions �Kalmykov et al., 2006�.

If the electric field of the plasma wave can be well
approximated by the cold result �i.e., E�EWB and �p

�th�, then the peak field Et required for the onset of
particle trapping as a function of the initial electron mo-
mentum p̃t is �Schroeder et al., 2006�

�Et/E0�2 � 2����p − 1� + 2�p
2�p�p̃t − ���pp̃t�2

+ 2�pp̃t��/�p�1/2� , �66�

assuming p̃t�1 �nonrelativistic initial momentum�. Note
that trapping can always occur even for plasma waves
with ultrarelativistic phase velocities ��p=1�, as shown in
Fig. 22. For ��=1, �p=1, and p̃t�1, �min�−1+ p̃t and
the peak field of an ultrarelativistic plasma wave re-
quired for trapping an electron with initial momentum p̃t

is Et /E0� p̃t
−1/2.

For a thermal plasma electron distribution, electrons
on the tail of the distribution may have sufficiently high
momentum so as to reside on trapped orbits. For
example, assuming an initial Gaussian momentum
distribution with initial rms momentum spread �th

2

=kBT0 /mc2, i.e., a momentum distribution F�p̃�
�exp�−p̃2 /2�th

2 �, the fraction of trapped electrons is

ftrap = 1
2 erfc�p̃t/�2�th� , �67�

where p̃t is given by Eq. �65�. Figure 23 shows the frac-
tion of trapped electrons versus the initial temperature
of a Gaussian plasma electron momentum distribution
for three different nonlinear plasma wave amplitudes

driven by a laser in a warm plasma �i.e., Êm determined

via Eq. �27�� with kpLrms=1 and a0=3.65 �Êm�1.75�,
a0=4.15 �Êm�2�, and a0=4.75 �Êm�2.25�, with �p=10.

The particle trapping model can also be used to cal-
culate the fraction trapped at the wave breaking field
�Esarey et al., 2007�. For example, when ��=1, Eq. �65�
can be solved for the plasma wave potential required for
trapping an electron, i.e., �min��p

−1−1+�pp̃t, for p̃t�1,
whereas using warm fluid theory �Schroeder et al., 2005�
the minimum potential at the wave breaking amplitude
is �min��p

−1−1+�p�3�th. Hence, a significant fraction of
the plasma electrons �satisfying p̃t��3�th� can be
trapped as the field approaches the wave breaking am-
plitude: ftrap=erfc��3/2� /2�0.04 for an initial Gaussian
momentum distribution.
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FIG. 22. Initial electron momentum p̃t required to be trapped
by a plasma wave with field amplitude Epeak/E0 and phase
velocity �p=5 �dotted curve�, �p=10 �solid curve�, �p=20
�dashed curve�, and �p=1 �dash-dotted curve�, assuming an
initial plasma temperature �th=10−2.
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FIG. 23. Fraction of trapped electrons ftrap �Eq. �67�� vs the
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The total number of trapped electrons �i.e., dark cur-
rent in the plasma accelerator� can be estimated from
Eq. �67�. For example, for a plasma density of n0
=1019 cm−3, driver transverse size of r�=10 �m, and ac-
celerator length of 1 mm, a trapping fraction of ftrap
=10−3 indicates �0.1 nC of trapped charge. This trap-
ping calculation neglects beam loading, which implies
the wakefield induced by trapped electrons is much
smaller than the primary plasma wave.

As the driver propagates into the plasma, more charge
will be trapped until the amplitude of the plasma wave is
substantially reduced due to beam loading. The beam
loading limit is defined as the number of accelerated
electrons required to produce a wakefield that cancels
the accelerating field of the plasma wave �Katsouleas et
al., 1987�. The trapped bunch density is nb� ftrapn0z /Lb,
where z is the propagation distance and Lb is the bunch
length. Assuming kpLb�1, the wakefield generated by
the bunch is given by Eb /E0�kpLbnb /n0 in the 1D limit,
assuming Eb /E0�1. The beam loading limit at which
Eb�Emax is then reached after a propagation distance of

zBL	kp
−1ftrap

−1 Êm. For Êm�1 and ftrap�1, kpzBL
1 and
beam loading will be significant after many plasma peri-
ods of propagation.

B. Trapping in the self-modulated LWFA

Perhaps the most basic and simplest form of a laser-
plasma injector is the self-modulated LWFA, in which a
single laser pulse results in self-trapping and generation
of a subpicosecond electron bunch, however, with a
large energy spread. Typically the self-trapped bunch is
of high charge �up to 10 nC�, with an energy distribution
characterized by a Boltzmann distribution with a few
MeV temperature. One possible mechanism for self-
trapping is via generation of large amplitude plasma
wakefields, approaching the wave breaking field
�Modena et al., 1995; Tzeng et al., 1997; Gordon et al.,
1998�. Since the phase velocity of the wakefield is very
near the speed of light, it is difficult to trap background
plasma electrons, which are undergoing the fluid oscilla-
tion that sustains the wake field. As discussed in Sec.
IV.A, the wake will trap background electrons when the
separatrix of the wake overlaps the plasma electron or-
bits. Electron trapping in a cold plasma wave in one
dimension occurs at EWB= �2��p−1��1/2E0
E0. Thermal
and 2D effects can lower this value, but typically self-
trapping requires nonlinear plasma waves with Ez�E0.
The observed wakefield amplitude, however, as mea-
sured in several experiments �Ting et al., 1996�, appears
to be in the range Ez /E0�10–30 %, well below the cold
wave breaking limit. This suggests that additional laser-
plasma instabilities may play a role in lowering the ef-
fective amplitude for electron self-trapping.

Alternatively, self-trapping and acceleration can result
from the coupling of Raman backscatter �RBS� and Ra-
man sidescatter �RSS� to the wakefield �Esarey et al.,
1998�. As the pump laser self-modulates, it also under-
goes RBS, which is the fastest growing laser-plasma in-

stability �cf. Sec. VI.A�. RBS is observed in intense short
pulse experiments, with reflectivities as high as 10
−30 % �Rousseaux et al., 1995; Ting et al., 1996�. RBS
generates redshifted backward light of frequency �0
−�p and wave number −k0, which beats with the pump
laser ��0 ,k0� to drive a ponderomotive wave ��p ,2k0�.
As the instability grows, the Raman backscatter beat
wave, which has a slow phase velocity vp��p /2k0�c,
can trap and heat background plasma electrons �Joshi et
al., 1981; Bertrand et al., 1995�. These electrons can gain
sufficient energy and be displaced in phase by the beat
wave such that they are trapped and accelerated to high
energies in the wakefield. Simulations �Esarey et al.,
1998� indicate that coupling to RBS can lead to self-
trapping at modest wakefield amplitudes, Ez /E0�0.25,
much lower than the 1D threshold for self-trapping.

In two dimensions, this process can be enhanced by
coupling to RSS. As the scattering angle decreases from
180° �backscatter�, the Raman growth rate decreases
and the phase velocity of the Raman plasma wave in-
creases. The electrons that are initially trapped and
heated by RBS can be subsequently trapped by RSS
modes propagating at smaller angles, which will acceler-
ate the electrons to higher energies �owing to the higher
phase velocity of the RSS modes� �Joshi et al., 1981; Es-
arey et al., 1998�. Eventually, these background electrons
can be trapped and accelerated to very high energies by
the plasma wave associated with the forward Raman in-
stability or the self-modulation instability, which has vp
�c.

When electrons become trapped in the fast wakefield,
they become accelerated to high energies as they circu-
late inside the separatrix of the wake. A large energy
spread for the trapped electrons results because �i� some
fraction of the background electrons are continually be-
ing swept up and trapped in the wakefield as the laser
pulse propagates into fresh plasma and �ii� typically the
self-guided propagation distance of the laser pulse is
much greater than the dephasing length for trapped
electrons �cf. Sec. II.E�. In the self-modulated regime
the dephasing length can be very short, e.g., Ld
�50 �m. This implies that deeply trapped electrons will
circulate many revolutions within the separatrix, again
resulting in a large energy spread. The maximum energy
of the trapped electrons is given by the maximum of the
separatrix, which corresponds to an energy �Esarey and
Pilloff, 1995� Wmax�4�p

2mec
2Ez /E0, for Ez /E0�1,

where �p is the phase velocity of the plasma wave.
For many applications, a small energy spread is de-

sired. One method for improving the self-modulated
bunch quality is by postacceleration. For example, the
self-modulated bunch could be immediately injected
into a second-stage composed of a standard LWFA with
L��p in which the wakefield is produced in a controlled
manner at an amplitude below the self-trapping thresh-
old. This could be achieved using a plasma that transi-
tions from a high plasma density ��p�L, self-modulated
LWFA� to a low plasma density ��p�L, standard
LWFA�. Simulations �Reitsma et al., 2002� show that in



this two-stage acceleration scheme, about 40% of the
injected bunch charge can be trapped and accelerated in
the LWFA with a reduced energy spread.

C. Optical injection techniques

In principle, if a small energy spread electron bunch
of length small compared to �p is injected into the wake-
field at the proper phase, then the bunch can be accel-
erated while maintaining a small energy spread. This be-
comes problematic in the LWFA since the wavelength of
the accelerating field is small, e.g., �p�30 �m for n0
�1018 cm−3. Hence, a low energy spread requires an ul-
trashort bunch duration 	b��p /c that is injected at the
optimal plasma wave phase with femtosecond timing ac-
curacy. These requirements are very challenging for con-
ventional electron beam injector technology �e.g., rf
photoinjectors�, although novel experimental designs
are being explored �Irman et al., 2007�. On the other
hand, the production of ultrashort laser pulses and the
femtosecond timing of multiple pulses is routine with
compact CPA technology. As discussed below, ultrashort
high-intensity laser pulses can be used to optically trig-
ger the injection of electrons into a single bucket
�plasma wave period� of a standard LWFA �Umstadter,
Kim, et al., 1996; Esarey, Hubbard, et al., 1997; Hemker
et al., 1998; Schroeder, Lee, et al., 1999; Fubiani et al.,
2004; Kotaki et al., 2004�. Optical injection via colliding
counterpropagating laser pulses has also been demon-
strated experimentally by Faure, Rechatin, et al. �2006�
and Kotaki et al. �2008�.

1. Ponderomotive injection

Umstadter, Kim, et al. �1996� first proposed using an
additional laser pulse to inject background plasma elec-
trons into the wake for acceleration to high energies. To
generate ultrashort electron bunches with low energy
spreads, the original laser injection method of Ums-
tadter, Kim, et al. �1996� used two laser pulses that
propagate perpendicular to one another. The first pulse
�pump pulse� generates a plasma wakefield via the
standard LWFA mechanism, and the second pulse �in-
jection pulse� intersects the wakefield some distance
behind the pump pulse. The ponderomotive force Fp

�−�mec
2 / �̃��a2 /2 associated with the intensity gradi-

ents of the injection pulse can accelerate a fraction of
the plasma electrons such that they become trapped in
the wakefield. Specifically, the axial �direction of propa-
gation of the pump pulse along the z axis� ponderomo-
tive force of the injection pulse �propagating along the x
axis� scales as

Fz = − �mec
2/�̃���/�z�a1

2/2 � �mec
2/�̃�a1

2/r1, �68�

where a1
2 and r1 are the normalized intensity and spot

size of the injection pulse, respectively. A simple esti-
mate for the change in momentum that an electron will
experience owing to the ponderomotive force of the in-
jection pulse is p̃z�Fz	1��mec

2 / �̃�a1
2	1 /r1, where 	1 is

the injection pulse duration. It is possible for p̃z to be

sufficiently large that electrons are injected into the
separatrix of the wakefield such that they become
trapped and accelerated to high energies. To inject into a
single plasma wave bucket, it is necessary for both the
injection pulse spot size and pulse length to be small
compared to the plasma wavelength, i.e., r1

2��p
2 and

c2	1
2��p

2. Numerical simulations �Umstadter, Kim, et al.,
1996�, which were performed for ultrashort pulses at
high densities ��p /�=10 and Ez /E0=0.7�, indicated the
production of a 10 fs, 21 MeV electron bunch with a 6%
energy spread. However, high intensities �I
�1018 W/cm2� are required in both the pump and injec-
tion pulses �a0�a1�2�. In the work of Umstadter, Kim,
et al. �1996�, the pump and injection pulses do not over-
lap in space and time, and a laser beat wave is not gen-
erated, as discussed below. Similarly, the axial pondero-
motive force of a cross-polarized counterpropagating
laser pulse could be used to trigger electron injection.

Simulations by Hemker et al. �1998� point out that
additional electron injection into one or more wake
buckets can result through the influence of the wake
associated with the injection pulse, which can be signifi-
cant because of the high intensity of the injection pulse
�a1�1�. Umstadter, Kim, et al. �1996� also discussed the
possibility of using an injection pulse that propagates
parallel, but some distance behind, the pump pulse. The
injection pulse would have a tighter focus �and hence
smaller Rayleigh length� than the pump pulse and would
be phased appropriately such that it locally drives the
wakefield to an amplitude that exceeds the self-trapping
threshold, thus resulting in local trapping and accelera-
tion of electrons. In addition, Umstadter, Kim, et al.
�1996� discussed the possibility of the injection pulse be-
ing focused to sufficiently high intensity such that it pro-
duces, locally, additional ionization. The ionized elec-
trons, which are born dephased from the background
plasma electron in the wake, could become trapped and
accelerated by the wake.

Injection by laser-induced ionization and ponderomo-
tive acceleration �LIPA� has also been discussed by
Moore et al. �1999� in a low-density regime. Here an
intense laser pulse �3�1018 W/cm2� interacts with a
high-Z gas �Kr� at low pressure �1 Torr�. The ionized
electrons from high-charge states are directly acceler-
ated by the laser ponderomotive force. Electrons with
energies up to a few 100 keV were ejected from the laser
focal region at large angles. A high-density LIPA regime
has also been investigated �Ting et al., 2005�, where ad-
ditional acceleration can result from the laser excited
wakefield.

2. Colliding pulse injection

Beat wave injection using colliding laser pulses �Es-
arey, Hubbard, et al., 1997, 1999; Leemans et al., 1998;
Schroeder, Lee, et al., 1999; Fubiani et al., 2004; Kotaki et
al., 2004� differs intrinsically from the method of pon-
deromotive injection discussed above in that the source
and form of the ponderomotive force differ in these two
methods. In ponderomotive injection, injection is the re-



sult of the ponderomotive force associated with the en-
velope �time-averaged intensity profile� of a single pulse.
In beat wave injection, injection is the result of the pon-
deromotive force associated with the slow beat wave of
two intersecting pulses. Beat wave injection was first
proposed by Esarey et al. �1997� in a concept referred to
as colliding pulse injection.

Colliding pulse injection in its original configuration
�Esarey et al., 1997a, 1999; Leemans et al., 1998;
Schroeder, Lee, et al., 1999� uses three short laser pulses:
an intense �a0

2�1� pump pulse �denoted by subscript 0�
for plasma wave generation, a forward going injection
pulse �subscript 1�, and a backward going injection pulse
�subscript 2�, as shown in Fig. 24. The frequency, wave
number, and normalized intensity are denoted by �i, ki,
and ai �i=0,1 ,2�, respectively. Furthermore, it is as-
sumed that k1�k0, k2�−k0, and �1−�2=�
�p. The
pump pulse generates a plasma wave with phase velocity
near the speed of light �vp0�c�. The forward injection
pulse travels at a fixed distance behind the pump pulse,
which determines the position �i.e., phase� of the in-
jected electrons. The injection pulses are orthogonally
polarized to the pump laser pulse, such that the pump
pulse and backward going injection pulse do not beat.

When the injection pulses collide some distance be-
hind the pump, they generate a slow ponderomotive
beat wave of the form a1a2 cos�kz−�t� �here k=k1
−k2�2k0� with a phase velocity vpb�
� 
 /2k0�c. The
axial force associated with this beat wave scales as

Fz = − �mec
2/�̃���/�z�a1a2 cos�2k0z − �t�

� �mec
2/�̃�2k0a1a2. �69�

During the time in which the two injection pulses over-
lap, a two-stage acceleration process can occur, i.e., the
slow beat wave traps and heats background plasma elec-
trons that, as a result of shifts in their momentum and
phase, can be injected into the fast wakefield for accel-
eration to high energies.

The ratio of the axial force of the beat wave to that of
a single pulse in the ponderomotive injection scheme

�owing to the gradient in the envelope of the laser inten-
sity� scales as

Fz,beat/Fz,env � 2k0a1a2/�ap
2/rp� , �70�

where the subscript p refers to the single ponderomotive
injection pulse and the contribution of the relativistic
Lorentz factor �̃ �which is different for the two cases� is
neglected. For comparable injection pulse intensities
�a1�a2�ap�, the ratio scales as 4�rp /�0
1, i.e., the
axial force of the beat wave is much greater than the
ponderomotive force from the intensity envelope of a
single pulse. Consequently, colliding pulses can result in
electron injection at relatively low intensities �a1�a2
�0.2�, as well as at relatively low densities ��p /��100�,
thus allowing for high single-stage energy gains. Further-
more, the colliding pulse concept offers detailed control
of the injection process: the injection phase can be con-
trolled via the position of the forward injection pulse,
the beat phase velocity via �, the injection energy via
the pulse amplitudes, and the injection time �number of
trapped electrons� via the backward pulse duration.

To further understand the colliding pulse injection
mechanism, it is insightful to consider the electron mo-
tion in the wakefield and in the colliding laser fields in-
dividually. Here we consider colliding laser pulses in a
plasma wave behind a drive laser pulse. In the absence
of the injection pulses, electron motion in a 1D wake-
field is described by the Hamiltonian Hw= �̃−�p��̃2

−1�1/2−���� �cf. Sec. II.E�, where �=�0 cos �, vp=c�p is
the phase velocity of the plasma wave, �p= �1−�p

2�−1/2,
and �=kp�z−vpt�. The electron orbits in phase space
�p̃z ,�� are given by Hw�p̃z ,��=H0, where H0 is a con-
stant, �̃2=1+ p̃z

2, and p̃z is the normalized �to mec� axial
momentum of an electron, which is given by

p̃z = �p�p
2�H0 + ����� ± �p��p

2�H0 + �����2 − 1�1/2.

�71�

The 1D separatrix �the boundary between trapped and
untrapped orbits� is given by Hw�p̃z ,��=Hw��p�p ,��,
i.e., H0=H1D=1/�p−����. The maximum and minimum
electron momenta on the 1D separatrix occur at �=0
and are �in the limits 2�0�p
1 and �p
1� p̃w,max

�4�p
2�0 and p̃w,min��4�0�−1−�0.

The 1D theory neglects the effects of transverse focus-
ing. Associated with a 3D wake is a periodic radial field
that is � /2 out of phase with the accelerating field, i.e.,
there exists a phase region of �p /4 for which the wake is
both accelerating and focusing �as opposed to the �p /2
accelerating region in one dimension�. If an electron is
to remain in this phase region, it must lie within the “3D
separatrix” defined by Hw�p̃z ,��=Hw��p�p ,� /2�, i.e.,
Eq. �71� with H0=H3D=1/�p−��� /2�. The extrema on
the 3D separatrix are given by p̃w,max�2�p

2�0 and
p̃w,min���0

−1−�0� /2. This value of p̃w,max�2�p
2�0 gives

the usual maximum energy gain due to linear dephasing
in a 3D wake.

The background plasma electrons �assumed initially
cold� lie on an untrapped orbit �below the separatrix� p̃zf
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FIG. 24. Profiles of the pump laser pulse a0, the wake �
�dashed curve�, and the forward a1 injection pulse, all of which
are stationary in the �=kp�z−vpt� frame and the backward
injection pulse a2, which moves to the left at �2c.



given by Hw�p̃zf ,��=1, i.e., Eq. �71� with H0=1. The
separatrix p̃w,min coalesces with the plasma fluid orbit,
p̃zf= p̃w,min, at the well-known cold wave breaking field
of EWB/E0= �2��p−1��1/2.

Consider the motion of electrons in the colliding laser
fields in the absence of the wakefield. The beat wave
leads to formation of phase space buckets �separatrices�
of width 2� /k��0 /2, which are much shorter than
those of the wakefield ��p�. In the colliding laser fields,
the electron motion is described by the Hamiltonian
�Esarey et al., 1997a� Hb= �̃−�b��̃2−��

2 ��b��1/2, where
the space charge potential is neglected. Circular polar-
ization is assumed such that ��

2 =1+a0
2+a1

2+2a0a1 cos �b,
where �b= �k1−k2��z−vbt� and vb=c�b=� / �k1−k2�
�� /2k0 is the beat phase velocity, assuming �p

2 /�0
2

�1. The beat separatrix is given by Hb�p̃z ,�b�
=Hb��b�b ,0� with maximum and minimum axial mo-
menta of

p̃b,m = �b�b�1 + �a0 + a1�2�1/2 ± 2�b�a0a1�1/2. �72�

An estimate for the threshold for injection into the
wakefield can be obtained by a simple phase-space is-
land overlap criteria. This is done by considering the
effects of the wakefield and the beat wave individually,
as done above, and by requiring that the beat wave sepa-
ratrix overlaps both the wakefield separatrix and the
plasma fluid oscillation �illustrated in Fig. 25�: �i� the
maximum momentum of the beat wave separatrix p̃b,max
exceeds the minimum momentum of the wakefield sepa-
ratrix p̃w,min, i.e., p̃b,max� p̃w,min and �ii� the minimum
momentum of the beat wave separatrix p̃b,min be less
than the plasma electron fluid momentum p̃zf, i.e.,
p̃b,min� p̃zf. Conditions �i� and �ii� imply a beat wave
threshold �Esarey et al., 1997a; Schroeder, Lee, et al.,
1999�

�a1a2�th
1/2 = �1 − H0�/4�b��p − �b� , �73�

and an optimal wake phase for injection �location of the
forward injection pulse�

cos �opt = �0
−1��1 − �b�p��b���0� − �1 + H0�/2� , �74�

where H0=H1D=1/�p+�0 for the 1D wake separatrix
and H0=H3D=1/�p for the 3D wake separatrix �trapped
and focused�. In the limits �p

2
1, �b
2�1, and ai

2�1, Eqs.
�73� and �74� become 4�a1a2�th

1/2��1−H0��1+�b� and
2�0 cos �opt�1−H0−2�b with H1D��0 and H3D�0. As
an example, �0=0.7, �b=−0.02, and �p=50 imply a
threshold of �a1a2�th

1/2�0.25 and an optimal injection
phase of �opt�0 for injection onto a trapped and fo-
cused orbit.

The above expressions are valid for �p� 
�
��0,
such that the separation in time scales is valid and beat
wave excitation of plasma waves is negligible. For equal
laser frequencies ��b=0� a standing laser beat wave ex-
ists that will produce a large amplitude space-charge re-
sponse, which is neglected in the above analysis. Elec-
tron acceleration and heating with intense standing beat
waves were studied by Sheng et al. �2004�.

The colliding laser injection method has been mod-
eled by numerically solving the motion of test particles
in the combined wake and laser fields for the three-
pulse �Schroeder, Lee, et al., 1999� configuration. An ex-
ample of the injection process for colliding pulses be-
hind a drive laser is given in Fig. 26, which shows the
evolution in longitudinal phase space of the test electron
distribution �a� before the collision of the injection laser
pulses �in the untrapped fluid orbit of the wake� at
�p t=0, �b� during the collision �crossing the wake
separatrix� at �p t=3, �c� after the collision at �p t
=14, and �d� the resulting energetic electron bunch at
�p t=114. Figure 26 also shows the 1D wake separatrix.
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FIG. 25. Longitudinal phase space showing beat wave separa-
trices �solid curve�, an untrapped plasma wave orbit �dashed,
lower curve�, a trapped plasma wave orbit �dotted curve�, and
a trapped and focused plasma wave orbit �dash-dotted, upper
curve�.
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FIG. 26. Electron distribution in longitudinal �uz ,�� phase
space �a� before injection pulse collision ��pt=0�, �b� during
collision ��pt=3�, �c� just after collision ��pt=14�, and �d� at
�pt=114 �38 MeV electron bunch with 1 fs duration, 0.2%
energy spread, and 0.9 mm mrad normalized transverse emit-
tance�. The separatrix between trapped and untrapped wake
orbits �solid line� is shown. From Schroeder, Lee, et al., 1999.



In the numerical studies, the laser pulse axial profiles
were half-period sine waves �linearly polarized with
Gaussian radial profiles� with peak amplitude ai and
length Li. The parameters of Fig. 26 are a1=a2=0.32,
L0=4L1=4L2=�p=40 �m, �0=0.7, �0=�2=0.8 �m, �1
=0.83 �m, and r0=r1=r2=15 �m, with the position of
the forward injection pulse centered at �inj=−12.6. After
z�0.7 mm of propagation following the collision �Fig.
26�d��, the bunch length is 1 fs with a mean energy of
38 MeV, a fractional energy spread of 0.2%, and a nor-
malized transverse emittance of 0.9 mm mrad. The ex-
ample contains a bunch charge of 2.6�106 electrons.
Note that the bunch number can be increased by in-
creasing the laser spot sizes �i.e., laser powers�. For ex-
ample, when the laser spot sizes are doubled to ri
=30 �m with all other parameters as in Fig. 26, the num-
ber of trapped electrons increases to 1.5�107 and the
normalized transverse emittance increases to
3.9 mm mrad.

Colliding pulse injection can also be achieved using
two laser pulses, with the same polarization, such that
the tail of the pump laser pulse beats with the counter-
propagating pulse, trapping electrons in the plasma
wave �Fubiani et al., 2004; Kotaki et al., 2004�. Colliding
the laser pulses at an angle has also been investigated
�Fubiani et al., 2004�. These configurations have the ad-
vantage of simplicity and experimental ease �at the cost
of some detailed control of the trapping process�.

The two-pulse configuration has been studied with 1D
PIC simulations for colliding pulses of equal frequency
��b=0� �Rechatin et al., 2007�. Plasma wake disruption,
due to the strong wave-particle resonance between the
beat wave and the cold plasma for equal frequencies,
and the resulting degradation of the beam were ob-
served �Rechatin et al., 2007�. Beam quality improve-
ment can be obtained by properly choosing the beat
phase velocity �Fubiani et al., 2004�. Further improve-
ment can be achieved using higher-order laser modes for
plasma wave excitation to reverse the focusing and de-
focusing phase regions �Michel, Esarey, et al., 2006�. The
laser-injected electron beam quality can also be im-
proved using negative plasma density gradients �Fubiani
et al., 2006�. Negative plasma density gradients can be
used to shift the injection phase and lower the trapping
threshold by lowering the wakefield phase velocity �as
described in Sec. IV.D�.

The initial set of optical trapping experiments used
the experimentally simpler two-pulse colliding pulse in-
jection geometry �Kotaki et al., 2004; Nakamura et al.,
2004; Faure, Rechatin, et al., 2006�. Details of high-
quality bunch production using this technique �Faure,
Rechatin, et al., 2006; Kotaki et al., 2008� are discussed in
Sec. VII.C.

D. Density transitions

Bulanov et al. �1998� described how a downward tran-
sition in the plasma density with a scale length Ltr long
compared to �p could be used to induce local self-

trapping in the plasma wave. Consider the position of a
phase peak on a plasma wave of the form �
=�0 cos kp� �where −�=ct−z is the distance behind the
drive beam� located Np periods behind the drive beam.
Before the density transition, the phase peak is located
at 
�1
=Np�p1, and after the transition, the phase peak is
located at 
�2
=Np�p2, where �p1 �n1� and �p2 �n2� are the
plasma wavelengths �densities� before and after the tran-
sition with �p1��p2 �n1�n2�. The density transition
changes the location of the phase peak by the relative
amount 
�p
=Np��p1−�p2�. If this transition occurs over
a length Ltr, then the change in the phase velocity is
vp /c�Np��p1−�p2� /Ltr. This effect increases propor-
tional to the distance behind the driver �increasing Np�,
as well as the magnitude of the density gradient, ��p1
−�p2� /Ltr�d�p /dz=−��p /2n�dn /dz.

More rigorously, the phase velocity of the wake during
a density transition can be calculated by considering the
local phase of the wake, which is given to leading order
by �=kp�z��z−ct�, where vg�c has been assumed since
changes to the group velocity due to a slow variation in
density are small in an underdense plasma �p

2 /�2�1.
Using the definitions of the effective frequency �p,eff
=−�� /�tand wave number kp,eff=�� /�z of the plasma
wave, the local phase velocity of the wake is given by
vp=�p,eff /kp,eff, i.e.,

vp/c = �1 + ��/kp�dkp/dz�−1. �75�

For a small variation, vp /c−1�−�� /kp�dkp /dz
=−�� /2n�dn /dz. Since ��0 behind the drive pulse, the
wake phase velocity will decrease for decreasing density
dn /dz�0.

Local trapping of electrons in the wake will occur at
the point at which the local phase velocity equals the
fluid velocity of the plasma electrons vp=ve. To leading
order, the size of the fluid oscillation depends on the
intensity of the drive pulse, the pulse length, and the
local plasma density. Since the resonance for exciting a
large amplitude wake is rather broad, L��p �weakly
dependent on density�, a large wake can be excited on
the density ramp with a fluid velocity given by ve /c
�Ez /E0, where Ez /E0�1 is the normalized electric field
amplitude of the wake. Equation �75� indicates that the
wake phase velocity will continue to decrease as a func-
tion of time for a fixed point on the density down ramp,
and, hence, the phase velocity of the plasma wave will
always decrease to the fluid velocity on a density down
ramp at a sufficiently large distance behind the drive
pulse �assuming the wake is not damped by some other
mechanism�. Using Eq. �75�, vp=ve will occur at a dis-
tance behind the drive pulse given by �=2�c /ve
−1�n / �dn /dz�. For example, if ve /c=1/3 and Ltr
=n
dn /dz
−1=3�p, then vp=ve occurs at 
�
=12�p.

Bulanov et al. �1998� performed 1D PIC simulations of
a laser pulse with a0=2 and L=12� propagating in a
plasma with �p1=23.4�, �p2=25�, and Ltr=24�. These
simulations found that the plasma wave breaks on the
ramp and injects a significant number of electrons into
the second wake bucket behind the laser pulse, which



are accelerated to high energy but with a large energy
spread. Simulations in two and three dimensions have
shown generation of well-collimated, narrow energy
spread, short electron beams via a decreasing plasma
density gradient �Tomassini et al., 2003; Brantov et al.,
2008�.

Suk et al. �2001� considered the limit of a step function
downward plasma density transition �n1=5�1013 cm−3

and n2=3.5�1013 cm−3� and a wake generated by an
electron beam driver of energy 16 MeV, bunch length
0.16�p2, bunch radius 0.089�p2, and peak density nb
=2.4n1=3.4n2. Using 2D PIC simulations, the trapped
electron bunch, after propagating a few plasma wave-
lengths pass the transition, had a total charge near
0.5 nC, a bunch length near 0.09�p2, and electron ener-
gies in the range of 5–15 MeV. Trapping across a para-
bolic density profile, which has the advantage of ease of
experimental production and control, has also been con-
sidered �Kim et al., 2004�. Electron injection via a sharp
laser-induced plasma density ramp �scale length of ramp
less than the plasma wavelength� has been demonstrated
in the self-modulated LWFA regime �Chien et al., 2005�.
Stable production of electron bunches ��1 MeV� has
been experimentally demonstrated by focusing a laser
on the downstream edge of a gas jet producing a nega-
tive plasma density gradient �Geddes et al., 2008� and is
discussed in Sec. VII.D.

V. PULSE PROPAGATION AND GUIDING

To describe laser pulse propagation in a fully ionized
plasma, it is convenient to represent the electric E and
magnetic fields B by the scaler � and vector A poten-
tials, E=−��−�A /�ct and B=��A, and to use Cou-
lomb gauge, � ·A=0. In terms of the normalized poten-
tials �=e� /mec

2 and a=eA /mec
2, the wave equation

and the Poisson equation are given by, respectively,

��2 −
1

c2

�2

�t2�a = kp
2 n

n0

u
�

+
1

c

�

�t
� � , �76�

�2� = kp
2�n − ni�/n0, �77�

where u=�v /c=p /mec is the normalized electron
plasma fluid momentum, �= �1−�2�1/2= �1+u2�1/2 is the
relativistic Lorentz factor, n is the plasma electron den-
sity, ni is the initial density profile �prior to the passage
of the laser pulse�, n0=ni�r=0� with r=0 corresponding
to the direction of propagation �the z axis�, and �p0
=ckp= �4�n0e2 /me�1/2. Here and in the following, it is
assumed that the ions remain stationary, which is typical
for short pulse lasers ��1 ps� propagating in underdense
plasma ��p0

2 /�2�1�. Furthermore, collisions and ther-
mal effects are neglected since the collision time is typi-
cally much greater than the laser pulse length and the
thermal velocity is typically much less than the quiver
velocity of an electron in the laser field.

The first term on the right-hand side of Eq. �76� is the
contribution due to the plasma current J. In the cold
fluid limit, J=−encu /�, where the plasma density n and

momentum u satisfy the continuity and momentum
equations, which are given by, respectively,

�n/�ct + � · �nu/�� = 0, �78�

��/�ct + �u/�� · ��u = �� + �a/�ct − �u/�� � �� � a� .

�79�

It is also convenient to introduce the independent
variables �=z−ct and 	= t, where � is an approximate
measure of the distance back from the head of the pulse
�which is moving with a group velocity vg�c�. Initially,
the front of the laser pulse is assumed to be at �=0 and
the pulse body extends into the region ��0 �the plasma
is unperturbed in the region ��0�. In terms of the � ,	
coordinates, the wave equation is given by �Esarey,
Sprangle, et al., 1993�

���
2 +

2

c

�2

���	
−

1

c2

�2

�	2�a � kp
2 n

n0�
u . �80�

On the right-hand side of Eq. �80�, the term ��� /�ct has
been neglected since the fast part of the electrostatic
potential, ��exp�ik��, is typically small compared to
relevant terms contributing to the fast part of the plasma
current. Typically, the third term on the left-hand side of
Eq. �80� can be neglected for forward going light waves.
As discussed in Sec. II, the leading-order transverse mo-
tion is the quiver motion. Hence, for a wide variety of
phenomena it is sufficient to approximate u=a on the
right-hand side of Eq. �80�.

The wave equation can be further simplified by the
slowly varying envelope approximation. Assuming a lin-
early polarized laser field with a transverse component
of the form af= âs�r ,� ,	�exp�ik�� /2+c.c., where 
��âs

� 
kâs
, the wave equation describing the evolution of
the slowly varying amplitude âs is given by

���
2 + 2i�

�

�	
+

2

c

�2

���	
�âs = kp

2 sâs, �81�

where  s= �n /n0� /�, u�f�af, �=ck is the laser fre-
quency, and the subscripts f and s denote the fast and
slow components, respectively. The term �2 /�	2, which is
small for forward going waves but important for back-
ward going waves �e.g., Raman backscatter�, has been
neglected in the wave operator. However, the �2 /���	
term is retained so as to correctly describe variations in
the laser pulse group velocity. Typically the operators in
the reduced wave equation scale as ���1/r0, ���1/L,
and �c	�1/ZR. Throughout the following, the subscripts
s and f will be dropped for convenience.

The paraxial approximation is the result of neglecting
the term �2 /���	 in Eq. �81�. In the paraxial approxima-
tion, each � slice of the laser pulse propagates at the
same velocity �=c�, and the power in each � slice is con-
served. Solutions to the paraxial wave equation in
vacuum describe laser pulse diffraction, e.g., the funda-
mental Gaussian laser mode diffracts via â�

= �a0r0 /rs�exp�−�1− iz /ZR�r2 /rs
2− i tan−1�z /ZR��, where rs

=r0�1+z2 /ZR
2 �1/2, ZR=kr0

2 /2, and z=c	.



A useful approximation in the study of short pulse
interactions with plasmas is the quasistatic approxima-
tion �QSA�, which was first applied to nonlinear laser-
plasma interactions by Sprangle et al. �1990a, 1990b�. In
the QSA, the plasma fluid equations are written in terms
of the independent variables � and 	, as above. The QSA
assumes that in the time it takes the laser pulse to transit
a plasma electron �i.e., the slippage time for an electron
through the laser pulse�, the laser pulse does not signifi-
cantly evolve. In other words, 	L�	E, where 	L=L /c is
the laser pulse duration and 	E is the laser pulse evolu-
tion time �typically c	E�ZR�. Thus the plasma electrons
experience a static �independent of 	� laser field. In the
QSA, the � /�	 derivatives are neglected in the plasma
fluid equations that determine the plasma response to
the laser pulse. The � /�	 derivatives, however, are re-
tained in the wave equation that describes the evolution
of the laser pulse. The QSA allows the laser-plasma in-
teraction to be calculated in an iterative fashion. For a
fixed 	, the plasma response to the laser field is deter-
mined as a function of � by solving the QSA fluid equa-
tions �e.g., Eq. �16� in the 1D limit�. Using this QSA fluid
response, the wave equation is then solved to update the
laser pulse in 	.

The fluid quantity  =n /�n0 in Eq. �81� can be deter-
mined from the quasistatic fluid equations. For example,
in the 1D limit, it can be shown �Esarey, Ting, et al.,
1993� that  ��1+��−1�1+kp

−2�g
−2��

2��, where � satisfies
Eq. �16�. In two dimensions and assuming vg�c, it can
be shown �Krall et al., 1994� that

 � �1 + "�−1� 0 + kp
−2��

2 "� , �82�

where  0 is the initial value of  �prior to the laser pulse�
and the quantity "=�−az satisfies

�2"

��2 = �kp
2 − ��

2 �uz +
�

��
�� · u�, �83�

with u�= �kp
2 �−1�����"� and uz= �u�

2 +a2−"�2+"�� /
�2�1+"��. The wake potential " is related to the axial

electric field Ez induced in the plasma by kpÊz

=−�" /��, where Êz=Ez /E0 and E0=mec�p0 /e.
A useful quantity in discussing phenomena such as

optical guiding is the index of refraction #r. The effec-
tive index of refraction #r is defined by setting the right-
hand side of Eq. �81� equal to k2�1−#r

2�a, which yields
#r�1−kp

2 /2k2.
Although this section discusses laser propagation in

fully ionized plasma, some laser-gas propagation effects
can be important to LPAs. LPA experiments may use
either neutral gas, photoionized by the laser, or a pre-
formed plasma. For cases where the laser first interacts
with neutral gas, pulse propagation can be affected dur-
ing transport to focus. Nonlinear effects �Esarey,
Sprangle, et al., 1997; Wu and Antonsen, 2003� such as
self-focusing, dispersion, and self-modulation can occur
during the laser-gas propagation at laser powers near the
critical power for nonlinear self-focusing in gas �Esarey,
Sprangle, et al., 1997�, PN=�2 / �2�#0#2� �for a Gaussian

radial intensity profile, with the index of refraction given
by #=#0+#2I�. For example, PN	1.8 GW for a �
=0.8 �m pulse propagating in air at 1 atm. Temporal
pulse narrowing and splitting are found to occur due to
phase modulation and group velocity dispersion �Wu
and Antonsen, 2003�. When the laser power exceeds the
ionization threshold of the gas, a plasma is formed, re-
sulting in ionization-induced refraction �Leemans et al.,
1992�, which defocuses the pulse. Ionization can also re-
sult in modulational instabilities due to varying degrees
of ionization throughout the laser pulse �Sprangle et al.,
1996b; Bian and Antonsen, 2001�. For even higher pow-
ers, partial trapping of the laser pulse in the plasma and
self-interference effects can occur �Wu and Antonsen,
2003�. Such effects can result in unstable performance of
the LPA.

In the case of hydrogen �helium� gas, laser prepulses
or amplified spontaneous emission from the laser system
that exceeds 1014 W/cm2 �1015 W/cm2� can result in a
preplasma that can impact the performance of the LPA
�Hosokai et al., 2003�. Controlling the preplasma has
been done by, for example, a localized magnetic field
�Hosokai, Kinoshita, et al., 2006�, by controlling the laser
prepulse levels �Mangles et al., 2006�, or through laser
preionization �Volfbeyn et al., 1999�.

A. Optical guiding in plasmas

The optical guiding mechanisms �Esarey, Sprangle, et
al., 1997� discussed below are based on the principle of
refractive guiding. Refractive guiding becomes possible
when the radial profile of the index of refraction #r�r�
exhibits a maximum on axis, i.e., �#r /�r�0. Since #r
�ckz /�, �#r /�r�0 implies that the phase velocity along
the propagation axis is less than off axis. This causes the
laser phase fronts to curve such that the beam focuses
toward the axis.

The index of refraction for a small amplitude electro-
magnetic wave propagating in a plasma of uniform den-
sity n=n0, in the 1D limit, is given by #r= �1−�p

2 /�2�1/2.
For large amplitude waves, however, variations in the
electron density and mass will occur, i.e., �p

2�r�
= ��p0

2 /��n /n0. Hence, the general expression for the in-
dex of refraction for a large amplitude electromagnetic
wave in a plasma is given by �Sprangle et al., 1992, 1990�

#r�r� � 1 −
�p0

2

2�2

n�r�
n0��r�

, �84�

assuming �p0
2 /�2�1. The index of refraction profile

#r�r� can be modified by the relativistic factor ��r� or the
radial density profile n�r�. The leading-order motion of
the electrons in the laser field is the quiver motion p�

=meca and, hence, ����= �1+a2�1/2. A laser intensity
profile peaked on axis �a2 /�r�0 leads to �#r /�r�0 and
the possibility of guiding �i.e., relativistic self-focusing�.
The density profile can have contributions from a pre-
formed density channel np�nr2 /r0

2 or a plasma wave
�n��n̂�r�cos kp�, where n=n0+np+�n. A radial den-
sity profile that has a minimum on axis �i.e., a channel�



implies �#r /�r�0 and the possibility of guiding. In the
limits a2�1, 
np /n0
�1, and 
�n /n0
�1, the refractive
index is �Esarey et al., 1996�

#r � 1 −
�p0

2

2�2�1 −
a2

2
+
np

n0
+
�n

n0
� . �85�

In the above expression, the a2 /2 term is responsible for
relativistic optical guiding �Litvak, 1969; Max et al., 1974;
Sprangle, Tang, et al., 1987; Sun et al., 1987�, the np /n0
term is responsible for preformed density channel guid-
ing �Steinhauer and Ahlstrom, 1971; Johnson and Chu,
1974; Sprangle and Esarey, 1992; Sprangle et al., 1992;
Durfee and Milchberg, 1993; Durfee et al., 1995; Volf-
beyn et al., 1999; Gaul et al., 2000; Goddes et al., 2004,
2005a�, and the �n /n0 term is responsible for self-
channeling �Sun et al., 1987; Kurki-Suonio et al., 1989;
Sprangle et al., 1992; Esarey, Sprangle, et al., 1993�,
plasma wave guiding �Esarey and Ting, 1990; Sprangle et
al., 1990a; Ting et al., 1990�, and self-modulation of long
laser pulses �Andreev et al., 1992; Antonsen and Mora,
1992; Sprangle et al., 1992 Esarey et al., 1994�.

B. Relativistic optical guiding

The self-focusing of laser beams by relativistic effects
was first considered by Litvak �1969� and Max et al.,
�1974�. In the standard theory of relativistic optical guid-
ing �Sprangle et al., 1987�, only the effects of the trans-
verse quiver motion of the electrons are included in the
expression for #r, i.e., n=n0 and �=���r�, where ��

2 =1
+a2�r� and circular polarization is assumed. Inclusion of
the self-consistent density response, however, indicates
that relativistic self-focusing is ineffective in preventing
the diffraction of short �L��p� laser pulses �Sprangle et
al., 1990, 1992�.

In the weakly relativistic limit �a2�1�, the refractive
index is given by

#r � 1 − ��p0
2 /2�2��1 − a2/2� , �86�

where the density response has been neglected �n=n0�.
Refractive guiding requires �#r /�r�0, which is satisfied
for a laser intensity profile peaked on axis, �a2 /�r�0.
The paraxial wave equation with a refractive index given
by Eq. �86� has the form of a Schrödinger equation with
a third-order nonlinearity, as in nonlinear optics where
#r=#0+#2I. Hence, self-focusing will occur when the la-
ser power P exceeds a critical power Pc �Sprangle, Tang,
et al., 1987�.

An equation for the laser spot size rs�� ,z� can be de-
rived by applying a method such as the source depen-
dent expansion �SDE� method �Sprangle, Ting, et al.,
1987� to the paraxial wave equation �Eq. �81� neglecting
the term �2 /���	�. In effect, the SDE method assumes
that the radial intensity profile is approximately Gauss-
ian, 
â
2= �a0r0 /rs�2 exp�−2r2 /rs

2�, and finds a best fit for
the spot size rs�� ,z� locally in space and time. Using the
index of refraction given by Eq. �86�, the laser spot size
evolves according to �Sprangle, Tang, et al., 1987�

d2R

dz2 =
1

ZR
2 R3�1 −

P

Pc
� , �87�

where R=rs /r0 is the normalized spot size, r0 is the mini-
mum spot size in vacuum, and ZR=kr0

2 /2 is the vacuum
Rayleigh length. The first term on the right-hand side of
Eq. �87� represents vacuum diffraction, whereas the sec-
ond term represents relativistic self-focusing. Here
P /Pc=kp

2a0
2r0

2 /16 for circular polarization �for linear po-
larization, a0

2→a0
2 /2�. The critical power for relativistic

self-focusing is Pc=2c�e /re�2�� /�p0�2, where re=e2 /mec
2

or, in practical units,

Pc�GW� � 17.4 ��/�p0�2. �88�

The solution to Eq. �87� with drs /dz=0 at z=0 is

rs
2/r0

2 = 1 + �1 − P/Pc�z2/ZR
2 , �89�

which indicates that the spot size diffracts for P�Pc,
remains guided or “matched” �rs=r0� for P=Pc, and fo-
cuses for P�Pc. Equation �87� predicts “catastrophic”
focusing for P�Pc. This results from the approximation
�1+a2�−1/2�1−a2 /2 in the a2�1 limit. Higher-order
nonlinearities will prevent the laser from focusing indefi-
nitely �Sprangle, Tang, et al., 1987; Hafizi et al., 2000�.

The above discussion of relativistic guiding neglected
the electron density response �n in the expression for
the index of refraction. The effectiveness of relativistic
guiding can be strongly influenced by the plasma re-
sponse. In particular, relativistic optical guiding is inef-
fective in preventing the diffraction of sufficiently short
pulses, L��p /�� �Sprangle et al., 1990, 1992� because
the index of refraction becomes modified by the laser
pulse on the plasma frequency time scale, not the laser
frequency time scale. Typically, relativistic guiding only
affects the body of long pulses, L��p.

In the 1D �rs
2kp

2
1� and weakly relativistic �a2�1�
limits, nonlinear quasistatic theory �Sprangle et al.,
1990a� indicates that the self-consistent electron density
response satisfies �n /n0−a2 /2�−��, hence,

#r � 1 − ��p0
2 /2�2��1 − ��� , �90�

where �� is the normalized electrostatic potential that
satisfies

��2/��2 + kp
2��� = kp

2a2/2. �91�

For long laser pulses with sufficiently smooth envelopes
�
�a2 /��
� 
kpa2
�, �2� /��2 can be neglected in Eq. �91�
�which neglects the generation of plasma waves� and
���a2 /2. Hence, in the long pulse limit L
�p, the in-
dex of refraction has the form given by Eq. �86� and the
standard theory of relativistic focusing discussed above
can be applied to the body of long pulses. Although long
pulses can be guided by relativistic effects, they can also
be unstable to self-modulation �Andreev et al., 1992; An-
tonsen and Mora, 1992; Sprangle et al., 1992� and laser-
hose instabilities �Shvets and Wurtele, 1994; Sprangle et
al., 1994�, which are discussed in Sec. VI.B.

Short pulse L��p diffraction, even in the regime P
�Pc, can be most easily shown as follows. For very short



pulses L��p, the kp
2 term can be neglected on the left-

hand side of Eq. �91�. For example, a short pulse with a
constant intensity profile �a2=a0

2� induces a space charge
potential given by ��kp

2a0
2�2 /4, and the refractive index

becomes

#r � 1 − ��p0
2 /2�2��1 − kp

2a0
2�2/4� , �92�

as opposed to Eq. �86�. This indicates that the effective
critical power for a short pulse �Sprangle et al., 1990a� is
Pc,sp�2Pc /kp

2�2
Pc since kp
2�2 /2�1 for a short pulse. In

particular, Pc,sp becomes infinite at the leading edge of
the pulse �→0. Hence, the leading portion L��p of a
laser pulse will diffractively erode even when P�Pc.

Simulations �Sprangle et al., 1992�, based on a 2D-
axisymmetric quasistatic fluid model, confirm the inabil-
ity of relativistic guiding to prevent the diffraction of
short laser pulses. The results are shown in Fig. 27 for
the parameters �p=0.03 cm �n0=1.2�1016 cm−3�, r0=�p
�Gaussian radial profile�, �=1 �m �ZR=28 cm�, and P
=Pc. The initial axial laser profile is given by 
â���

=a0 sin�−�� /L� for 0�−��L=c	L, where a0=0.9 for
the above parameters. Simulations are performed for
two laser pulse lengths, L=�p �	L=1 ps� and L=�p /4
�	L=0.25 ps�. The spot size at the pulse center versus
normalized propagation distance c	 /ZR is shown in Fig.
27 for �a� the vacuum diffraction case, �b� the L=�p /4
pulse, and �c� the L=�p pulse. The L=�p /4 pulse dif-
fracts almost as if in vacuum. The L=�p pulse experi-
ences a small amount of initial guiding before diffract-
ing. A preformed parabolic plasma density channel,
however, is effective in guiding the L=�p pulse, as
shown in Fig. 27�d�, where the channel depth is given by
n=1/�rer0

2=1.3�1015 cm−3 and the density on axis is
n0=1.2�1016 cm−3.

Experiments on relativistic self-guiding have been
performed for laser pulses propagating in gas-filled
chambers, pulsed gas jets, or plasmas generated by ex-
ploding foils �Borisov et al., 1992; Monot et al., 1995;
Young et al., 1995; Chiron et al., 1996; Borghesia et al.,
1997; Krushelnick et al., 1997; Wagner et al., 1997; Clay-
ton et al., 1998; Leemans et al., 2002�. For example, in
experiments using gas jets �Krushelnick et al., 1997;

Wagner et al., 1997; Clayton et al., 1998; Santala, Najmu-
din, et al., 2001; Leemans et al., 2002�, the laser pulse was
typically observed to propagate through the entire width
of the jet �approximately few millimeters, which corre-
spond to a few tens of ZR, depending on the focusing
optics used� when P�Pc. Many of these experiment oc-
curred in the self-modulated LWFA regime, and acceler-
ated electrons were also observed �Krushelnick et al.,
1997; Wagner et al., 1997; Clayton et al., 1998; Santala,
Najmudin, et al., 2001a; Leemans et al., 2002�. In most of
these experiments, ponderomotive self-channeling also
occurs simultaneously with relativistic self-focusing, as
discussed in Sec. V.D.

C. Preformed plasma density channels

The concept of using a plasma density channel to
guide a laser beam dates back to early studies of laser
fusion �Steinhauer and Ahlstrom, 1971; Johnson and
Chu, 1974�. Density channels in plasmas have been cre-
ated by a number of methods. An intense laser pulse
propagating in a plasma can create a channel through a
combination of ponderomotive and thermal effects. The
creation of a density channel through the hydrodynamic
expansion of the radial plasma profile was observed in
the early 1970s in long-pulse �150 ns� CO2 laser experi-
ments �Johnson and Chu, 1974�. The length of such a
channel, however, is limited to the propagation distance
of the laser pulse that creates the channel, and the utility
of using such a channel to guide a laser pulse, many
Rayleigh lengths, is limited. High-power short laser
pulses can be guided in plasma channels created by a
variety of methods, including laser-induced hydrody-
namic expansion �Durfee and Milchberg, 1993; Milch-
berg et al., 1996; Volfbeyn et al., 1999; Gaul et al., 2000;
Geddes et al., 2004� and capillary discharges �Zigler et
al., 1996; Ehrlich et al., 1998; Hooker et al., 2000; Hoso-
kai et al., 2000; Butler et al., 2002; Luther et al., 2004;
Leemans, Nagler, et al., 2006; Gonsalves et al., 2007; Na-
kamura et al., 2007�.

To understand the basic principles of channel guiding,
consider a parabolic density channel of the form n=n0

+nr2 /r0
2, where n=n�r0�−n�0� is the channel depth.

For a low power P�Pc, low intensity a2�1 laser pulse,
the index of refraction is given by

#r = 1 −
�p0

2

2�2�1 +
n

n0

r2

r0
2� . �93�

Analysis of the paraxial wave equation with an index of
refraction of this form indicates that the spot size rs of a
Gaussian laser beam with 
â
2= �a0r0 /rs�2 exp�−2r2 /rs

2�
evolves according to �Esarey et al., 1994�

d2R

dz2 =
1

ZR
2 R3�1 −

n

nc
R4� . �94�

The first term on the right-hand side represents the ef-
fects of vacuum diffraction and the second term repre-
sents the focusing effects of the channel. Equation �94�
indicates that a Gaussian beam will be guided at the

FIG. 27. Laser spot size rs vs normalized propagation distance
c	 /ZR for �a� vacuum diffraction, �b� L=�p /4, and �c� L=�p,
with parameters P=Pc, a0=0.9, and �p=0.03 cm. �d� Guiding
of L=�p pulse in a preformed parabolic plasma density chan-
nel with n=1/�rers

2. From Sprangle et al., 1992.



matched beam spot size rs=r0 provided that the channel
depth n is equal to the critical channel depth given by
�Sprangle and Esarey, 1992; Sprangle et al., 1992�

nc = ��rer0
2�−1 �95�

or nc�cm−3�=1.13�1020/r0
2��m�, where re=e2 /mec

2 is
the classical electron radius.

The general solution to Eq. �94� for the initial �z=0�
conditions drs /dz=0 and rs=ri is �Esarey et al., 1994�

2
rs

2

ri
2 = 1 +

ncr0
4

nri
4 + �1 −

ncr0
4

nri
4 �cos�kosz� , �96�

where kos= �2/ZR��n /nc�1/2 and ri is the injected spot
size. A matched beam requires nri

4=ncr0
4, e.g., ri=r0

and n=nc. If the beam is not matched within the
channel, the spot size oscillates between rs

2=ri
2 and rs

2

=ncr0
4 /nri

2 with an average value �rs
2�= �ri

2 /2��1
+ncr0

4 /nri
4�. The oscillation period within the channel

is �os=2� /kos=�ZR�nc /n�1/2. The laser beam will re-
main confined within the channel provided that the
maximum radius of the channel is sufficiently larger than
rs.

For a long �L
�p� laser pulse in a plasma channel,
relativistic self-focusing will also contribute to guiding.
In the a2�1 limit, Eq. �94� is modified by including the
term −�ZR

2 R3�−1P /Pc on the right-hand side. The
matched beam condition is then n /nc=1−P /Pc. For a
mismatched beam, Eq. �96� is modified by multiplying
the ncr0

4 /nri
4 terms by 1−P /Pc. For a short pulse, the

effects of P /Pc are diminished, as discussed in Sec. V.B.
To illustrate the effectiveness of optical guiding using

preformed density channels, the results of two simula-
tions are presented, based on the 2D-axisymmetric fluid
model discussed in Sec. V. The first simulation �Esarey,
Sprangle, et al., 1993� is of a channel-guided LWFA with
an ultrashort �L��p� high-intensity �a0�1� laser pulse,
the results of which are shown in Figs. 28�a�, 29, and 30.
In this example, the initial axial laser profile is given by

â���
=a0 sin�−�� /L� for 0�−��L, with a0=0.72 and
L=120 �m �400 fs�. Also, �=1 �m and r0=60 �m

�Gaussian radial profile�, which implies ZR=1.1 cm and
P=40 TW. The density on axis is chosen such that L
=�p �n0=7.8�1016 cm−3� and a parabolic profile is as-
sumed with n= ��rer0

2�−1=3.2�1016 cm−3.
Figure 28�a� shows the evolution of the laser spot size

versus normalized propagation distance c	 /ZR. The la-
ser pulse remains guided by the density channel, the la-
ser spot size exhibiting small oscillations about its initial
value over the full 20ZR=23 cm simulation length. After
c	=20ZR, the pulse profile shows very little distortion
from its initial profile. A surface plot of the electron
density profile at c	=20ZR is shown in Fig. 29. The ini-
tial unperturbed parabolic profile can be seen at �=0,
and the distortion of the channel by the laser pulse, in-
cluding the excitation of a large amplitude wakefield
along the axis, is evident in the region ��0. In this ex-
ample nearly all electrons have been expelled from the
vicinity of the laser pulse. The radial variation in the
channel density causes a radial variation in the plasma
wavelength and curvature of the plasma wave fronts. A
slight axial damping of the plasma wave also occurs, as
evident in Fig. 30, where the axial electric field Ez is
plotted versus � along the axis at c	=20ZR.

The second simulation is an example of mismatched
laser propagation in a channel, which extends in the
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FIG. 28. Laser spot size rs vs propagation distance c	 for �a� a
channel-guided LWFA, �b� vacuum diffraction, and �c� the self-
modulated LWFA shown in Figs. 14–16. From Esarey,
Sprangle, et al., 1993.

FIG. 29. Plasma electron density n /n0 at c	=20ZR for a
channel-guided LWFA. Initial density profile is parabolic with
a depth n=nc=1/�rer0

2. From Esarey, Sprangle, et al., 1993.

FIG. 30. Axial electric field Ez on axis at c	=20ZR for
channel-guided LWFA shown in Fig. 29. From Esarey,
Sprangle, et al., 1993.



range 0.5�z�1.5 cm with n0=5�1018 cm−3 and np�r
=150 �m�=4n0 /5 �parameters near those of the experi-
ment of Ehrlich et al. �1996��. Here a �=0.8 �m, 100 fs,
30 GW �3 mJ�, 1.6 times diffraction-limited laser pulse is
focused on the channel entrance with spot size ri
=15 �m. Owing to the low laser power, the pulse does
not become self-modulated. Figure 31 shows that the
laser spot size oscillates about its matched value of r0
=28 �m, emerging from the 1 cm long channel with a
radius of 45 �m and a divergence angle of 14 mrad, in
approximate agreement with the experiment of Ehrlich
et al. �1996�.

The above discussion concerned parabolic channel
profiles. Other channel profiles, however, may offer dif-
ferent advantages. Durfee et al. �1995� discussed the for-
mation of “leaky” channels, in which the channel is ap-
proximately parabolic out to some radius, after which
the density goes to zero. Such a profile occurs naturally
in the creation of plasma channels by hydrodynamic ex-
pansion of a hot plasma core in a gas. Higher-order
transverse modes may not be guided by such a channel,
and Antonsen, and Mora �1995� described how leaky
channels can stabilize certain instabilities, such as small
angle forward Raman scattering �Antonsen and Mora
1993; Mori et al., 1994� self-modulation �Andreev et al.,
1992; Sprangle et al., 1992; Esarey et al., 1994�, and laser
hosing �Shvets and Wurtele, 1994; Sprangle et al., 1994�.
Hollow channels �e.g., a plasma channel with density
zero on axis out to the channel radius rch� may have
beneficial properties with regard to particle acceleration
�Chiou et al., 1995; Schroeder, Wurtele, et al., 1999�.
Within the hollow channel, where the plasma density is
essentially zero, the transverse profile of the axial wake-
field is uniform and the focusing force linear. The ex-
cited wakefield is electromagnetic with fundamental
mode frequency �Schroeder, Wurtele, et al., 1999� �hc
=�p�1+kprchK0�kprch� /2K1�kprch��−1/2, where K0,1 are
modified Bessel function. The wakefield in such a chan-
nel, however, may be damped through resonant absorp-
tion in the channel walls at �hc��p�r� �Shvets et al.,
1996�.

The ability to guide intense laser pulses over many ZR
is an essential element of a high-energy LWFA �Lee-

mans et al., 1996, 1998�. Plasma channel guiding of short
laser pulses was first demonstrated in hydrodynamically
formed plasma channels produced by focusing a rela-
tively intense laser beam with an axicon lens �Durfee
and Milchberg, 1993; Milchberg et al., 1996�. In these
pioneering experiments, high-Z gases were used to fa-
cilitate the ionization process. High-Z gases, however,
are susceptible to further ionization when used with ul-
trahigh intensity lasers, and, therefore a method was
needed to allow the use of low-Z gases. By separating
out the ionization and heating phase of the channel for-
mation, channels were produced in hydrogen gas with
the ignitor-heater method �Volfbeyn et al., 1999�.

Another laser-induced channel guiding technique uti-
lizes a pump-probe method �Krushelnick et al., 1997;
Wagner et al., 1997�. In these experiments, an intense
pump pulse with P�Pc was guided through a gas jet
through a combination of relativistic self-focusing and
ponderomotive self-channeling. The ponderomotive
force of the pump pulse created a plasma channel after
its passage. This channel was then used to guide a low
power probe pulse propagating along the axis.

In addition to laser-induced channels, guiding has also
been demonstrated in plasma channels produced by cap-
illary discharges �Zigler et al., 1996; Ehrlich et al., 1998;
Hooker et al., 2000; Hosokai et al., 2000; Butler et al.,
2002; Luther et al., 2004; Leemans, Nagler, et al., 2006;
Nakamura, et al., 2007�. One advantage of capillary dis-
charges over that of laser-induced plasma channels is
length. Laser-induced channels have typically been lim-
ited to a few millimeters, whereas capillary discharges
can be on the order a few centimeters. Possible disad-
vantages of capillary discharges include a limited life-
time and the introduction of higher Z impurities due to
wall ablation. Guiding in curved capillaries has also been
demonstrated �Ehrlich et al., 1996�.

Other channel techniques have also been considered,
such as evacuated and gas-filled capillaries �Dorchies et
al., 1999� laser-ablated capillaries �Kitagawa et al., 2004�,
discharge-initiated laser-induced channels �Gaul et al.,
2000�, as well as laser-induced channels using a cluster
jet �Kumarappan et al., 2005�, which has the possible
advantage of producing lower density channels. Prior to
2004, however, all demonstrations of guiding in pre-
formed plasma density channels were limited to the
mildly relativistic regime, i.e., a0

2�1.
Channeling at relativistic intensities �Geddes et al.,

2004, 2005a� was realized with preformed guiding chan-
nels created using a variation in the ignitor-heater
method. In these experiments, a plasma was formed in a
2.4 mm long supersonic H2 gas jet with an atomic den-
sity of 3�1019 cm−3 by an ignitor pulse �15 mJ,60 fs�
that is co-axial with the drive pulse, then heated by a
heater pulse �150 mJ,250 ps�. Figure 32 shows the basic
experimental setup. Hydrodynamic expansion of the
plasma formed a channel that guided a relativistically
intense drive pulse that was focused at the entrance to
the channel. The drive pulse �500 mJ,55 fs� was focused
with an off-axis parabola to a spot of 7 �m FWHM re-

r s

rs

FIG. 31. Laser spot size vs propagation distance z=c	 in
vacuum �dashed curve� and in a plasma channel �solid curve�
located at 0.5�z�1.5 cm for a low-power P�Pc mismatched
pulse. From Ehrlich et al., 1996.



sulting in a laser intensity of 7�1018 W/cm2.
The ignitor-heater method provides the ability to tai-

lor the channel properties. By varying the time delay
between the heater and drive pulses, energy of the
heater pulse, and spatial overlap, channels can be cre-
ated with different radial density profiles. Figure 33
shows an example of mode images of laser spots at
4 TW �7 �m input spot, 7�1018 W/cm2�. With the chan-
nel on, the output spot �Fig. 33�b�� matches the input
spot �Fig. 33�a��. The guided intensity within the channel
is estimated to be 2.5�1018 W/cm2. In the absence of
any plasma, a large mode size consistent with vacuum
diffraction is observed �Fig. 33�c��, and, with the gas jet
on, but the channel off, Fig. 33�d� diffraction is increased
by ionization effects �Rankin et al., 1991; Leemans et al.,
1992b�, showing that self-guiding alone is insufficient to
efficiently guide the laser pulse.

D. Ponderomotive self-channeling

The radial ponderomotive force of a long laser pulse
�L��p� propagating in an initially uniform plasma can
expel electrons from the axis thus creating a density
channel �i.e., self-channeling or electron cavitation� �Sun
et al., 1987; Kurki-Suonio et al., 1989; Sprangle and Es-
arey, 1992; Sprangle et al., 1992; Esarey, Sprangle, et al.,
1993; Hafizi et al., 2000�. This can enhance the effects of
relativistic self-focusing. Consider a long �L
�p� axially
uniform laser pulse propagating in an initially uniform
plasma. The steady-state radial force balance indicates
that the space charge force is equal to the ponderomo-
tive force, i.e., ���=����, where ��= �1+a2�1/2 �with
circular polarization�. This implies a density perturba-
tion via the Poisson equation ��

2 �=kp
2�n /n0 given by

�Sun et al., 1987; Kurki-Suonio et al., 1989; Sprangle et
al., 1992�

�n/n0 = kp
−2��

2 �1 + a2�1/2, �97�

assuming 
�n /n0
�1. The corresponding index of refrac-
tion is given by

#r � 1 −
�p0

2

2�21 + kp
−2��

2 �1 + a2�1/2

�1 + a2�1/2 � . �98�

This can also be derived from 2D nonlinear plasma
theory via Eq. �82�. In the long pulse limit L
�p,

�" /��
� 
kp"
 and �1+"���1+a2�1/2, which yield Eq.
�98�. Neglected in Eq. �98� is the generation of plasma
waves, which can lead to the self-modulation of long
pulses.

In the limit a2�1, a Gaussian laser profile a2

=a0
2 exp�−2r2 /r0

2� creates a density profile �n=−�n�0��1
−2r2 /r0

2�exp�−2r2 /r0
2�. Along the axis, the depth of the

ponderomotive channel is given by �n�0�=a0
2nc, where

nc is given by Eq. �95�. Analysis of the paraxial wave
equation with a density perturbation given by �n /n0

=kp
−2��

2 a2 /2 indicates that the normalized spot size of a
Gaussian laser pulse evolves according to �Sprangle et
al., 1991�

d2R

dz2 =
1

ZR
2 R3�1 −

P

Pc
−
�n�0�
2nc

R−2� , �99�

where �n�0�=a0
2nc and a2�1 is assumed. Hence, in the

limit P /Pc�1, the ponderomotive channel depth re-
quired to guide a laser pulse is �n�0��2nc. When a0
�1, the ponderomotive self-channel alone will not guide
the laser pulse. Furthermore, 
�n /n0
�1 implies a0

2

�2�P /Pc�1/2 and �n�0��2�P /Pc�1/2nc. Hence, P /Pc�1
implies �n�0��2nc, which again indicates that the pon-
deromotive channel alone will not guide the laser pulse.
For laser powers approaching the critical power P→Pc,
guiding is achieved predominantly by relativistic self-
focusing. Ponderomotive self-channeling can enhance
this effect but does not dramatically alter the power
threshold for guiding. More detailed studies �Sun et al.,
1987; Hafizi et al., 2000�, which include the effects of
relativistic self-focusing and ponderomotive self-

FIG. 32. Schematic of an channel-guided LPA experimental
setup. Plasma channel formation uses the ignitor and heater
laser pulses. The main drive pulse propagates down the plasma
channel, driving a wakefield and self-trapping electrons. Den-
sity profiles are measured using a frequency-doubled probe
beam. An integrating current transformer �ICT� is used to
measure the charge per bunch of the electron beam. A dipole
magnet permits electron beam energy distribution measure-
ments. Additional detectors are used to monitor laser pulses,
plasma, and secondary radiation �e.g., terahertz radiation, �
rays, and neutrons�.
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FIG. 33. �Color� Mode images of laser propagation with 4 TW
�P�2Pc� peak power. The guided output mode after 2.4 mm
��10ZR� of propagation �b� is indistinguishable from the input
mode �a�. The effect of the channel can be seen by comparison
to vacuum propagation over the same distance where the out-
put mode is diffracted �c�. The output mode with gas jet on but
without the guide displays enhanced diffraction �d�. Note en-
larged scale in �c� and �d�. From Geddes et al., 2005a.



channeling, concluded that the threshold power for
guiding is P�GW��16.2��2 /�p0

2 �.

E. Plasma wave guiding

An ultrashort �L��p� laser pulse can be guided by a
plasma wave, provided that the laser pulse is properly
phased within the wakefield and the wakefield ampli-
tude is sufficiently large �Esarey and Ting, 1990;
Sprangle et al., 1990a; Ting et al., 1990�. The effective
index of refraction for a low power �P /Pc�1�, low in-
tensity �a2�1� laser pulse propagating in a plasma wave
is given by

#r � 1 − ��p0
2 /2�2��1 + �n/n0� , �100�

where �n is the density oscillation of the plasma wave,
which is assumed to be unaffected by the low intensity
laser pulse. Consider a plasma wave of the form �n
=�n̂�r�sin�kp��, where �n̂�0 and d�n̂ /dr�0. In regions
where sin�kp���0, the plasma wave acts as a local den-
sity channel and enhances focusing, and in regions
where sin�kp���0, the plasma wave enhances diffrac-
tion. Notice that a test laser pulse experiences maximum
focusing at the minimum of �n �i.e., �=−� /2�. For a
Gaussian laser mode, in the limit a2�1, the wake ampli-
tude required to guide a test laser pulse is �n̂�0�=2nc
�Esarey, Sprangle, et al., 1997�. As discussed in Sec. II.G,
it can be shown that a short laser pulse can be frequency
upshifted by a plasma wave wakefield provided that it
resides in the phase region where ��n /���0. In particu-
lar, maximum frequency upshifting occurs at the maxi-
mum of −��n /�� �i.e., �=−� for the above example�. In
general, for a sinusoidal plasma wave, a test laser pulse
will experience both enhanced focusing and frequency
upshifting over a 
kp�
=� /4 phase region of the plasma
wave. Furthermore, Eq. �100� describes how a plasma
wave can lead to the modulation of a long �L��p� laser
pulse �Esarey and Ting, 1990�, as illustrated in Fig. 34.

In addition to a plasma wave acting as a local density
channel and providing periodic regions of enhanced fo-
cusing and diffraction as described above, a plasma wave
can enhance the self-focusing of long �L
�p� laser
pulses by several other methods. For example, the elec-
tric field profile Epw of the plasma wave can provide an
additional radial ponderomotive force via �Epw

2 �Joshi et
al., 1982�. In addition, the oscillatory motion of the
plasma electrons in the plasma wave can contribute to
the relativistic Lorentz factor �Mori et al., 1988�. Further-
more, the plasma wave can lead to the generation of
higher-order Stokes and anti-Stokes light waves �i.e., en-
ergy cascading� that can affect self-focusing �Gibbon and
Bell, 1988�. These effects have been observed in experi-
ments �Joshi et al., 1982� and simulations �Gibbon and
Bell, 1988; Mori et al., 1988� of two-frequency laser-
plasma interactions, in which the plasma wave is reso-
nantly driven by the laser beat wave.

VI. LASER-PLASMA INSTABILITIES

Laser-plasma instabilities can limit the laser propaga-
tion distance and degrade the performance of an LPA.
This section will provide a brief overview of a few insta-
bilities that are relevant to short-pulse LPAs: stimulated
forward and backward Raman scatterings �Kruer, 1988;
Esarey and Sprangle, 1992; McKinstrie and Bingham,
1992; Sakharov and Kirsanov, 1994; Decker, Mori, Kat-
souleas, et al., 1996; Schroeder, Esarey, Shadwick, and
Leemans, 2003�, self-modulation �Andreev et al., 1992;
Antonsen and Mora, 1992, 1993; Sprangle et al., 1992;
Esarey et al., 1994, 2000�, and laser-hose instabilities
�Shvets and Wurtele 1994; Sprangle et al., 1994�. In par-
ticular, this section will consider instabilities relevant to
laser pulses short compared to the ion response time.
Other instabilities present in long-pulse laser-plasma in-
teractions, such as parametric coupling to ion modes,
which have been observed in PBWA experiments
�Amiranoff et al., 1992�, will not be discussed.

A. Stimulated Raman scattering

Stimulated Raman scattering involves the interaction
of a light wave with an electron plasma wave �Kruer,
1988�. In its most basic form, it consists of the decay of
the pump laser field, with frequency and wave number
��0 ,k0�, into an electron plasma wave ��e ,ke� and two
scattered light waves, namely, a Stokes wave ��0
−�e ,k0−ke� and an anti-Stokes wave ��0+�e ,k0+ke�.
Typically, �e��p+ i!, where the growth rate ! is ob-
tained through a standard linear instability analysis. In
such an analysis, the pump laser field is assumed to be a
1D plane wave of the form a�a0 exp�ik0 ·r− i�0t�. Per-
turbations are introduced, �a�exp�i�k0±ke� ·r
− i��0±�e�t�, and the linearized equations are then
solved to determine the behavior of the instability. Since
the pump laser is assumed to be a 1D plane wave, the

FIG. 34. Schematic of focusing effects of an externally gener-
ated plasma wave on an initially uniform low-intensity laser
pulse.



3D evolution of the pump laser is not taken into consid-
eration. In particular, the effects of diffraction and self-
focusing are neglected. Strictly speaking, the resulting
analysis is only valid for times short compared to the
characteristic evolution time 	E of the pump laser, e.g.,
t�	E�ZR /c. In practice, however, the growth rates ob-
tained from such an analysis can be adequate estimates
provided that the mode frequency and growth rate are
large compared to 	E

−1.
For an infinite 1D plane wave pump field, the purely

temporal Raman growth rates, i.e., �a�exp�!t� with
growth rate ! independent of t, can be obtained in a
straightforward manner. The basic treatment of forward
and backward Raman scattering is presented in the
monograph by Kruer �1988�. The coupled linearized
equations for the scattered waves and the plasma wave,
in the long pulse limit, yield the dispersion relation
�Sakharov and Kirsanov, 1994; Schroeder, Esarey, Shad-
wick, and Leemans, 2003�

�p
2a0

2

4��
3 �k2c2

Dp
− 1� = � 1

D+
+

1

D−
�−1

, �101�

where Dp=�e
2−�p

2 /�� is the plasma wave dispersion re-
lation and D±= ��0±�e�2− �k0±ke�2c2−�p

2 /�� are the dis-
persion relations for the scattered light waves. Temporal
growth rates for the Raman modes in various regimes
can be derived from Eq. �101� �see, for example, Anton-
sen and Mora �1993��. For short laser pulses, however,
the growth and propagation of the instability with re-
spect to the laser pulse front must be correctly taken
into consideration. Antonsen and Mora �1992, 1993� first
applied convective instability analysis, or a spatiotempo-
ral analysis, to Raman instabilities in order to account
for the short-pulse character of the instability.

1. Raman backward scattering

In Raman backscattering �RBS�, the pump wave
��0 ,k0� decays into a plasma wave ��e ,ke� and a back-
ward going scattered wave ��0−�e ,k0−ke�, where �e
��p and ke�2k0. The standard temporal growth rate
�Kruer, 1988�, in the limits a0

2��p /�0�1, i.e., the
weakly coupled regime, is != �a0 /2���p�0�1/2. In general,
the scattered mode can propagate at some angle � with
respect to the pump wave, i.e., sidescatter, and the
growth rate is given by sin�� /2� times the RBS result
�when 2 sin�� /2�
�p /�0�. The spatiotemporal analysis
indicates that the number of e-folds Ne of the instability,
�a�exp�Ne�, is given by �Antonsen and Mora, 1993�

Ne � �a0
2kpk0/8�1/2
�
 . �102�

In effect, owing to the convective nature of the instabil-
ity, the temporal growth is modified by ct→ 
�
 /�2, where
�=z−ct is a measure of the distance back from the front
of the laser pulse.

Typically, RBS is the fastest growing of the Raman
scattering instabilities. In LPAs, RBS is significant for a
number of reasons. At low pump laser intensities, the
spectrum of the backscattered radiation can be used to

determine �0−�p, and hence the plasma density can be
determined experimentally. For high pump intensities,
however, it has been observed that the backscattered
spectrum broadens �Darrow et al., 1992; Krushelnick et
al., 1998� and, in some cases, becomes extremely broad,
such that the �0−�p peak can no longer be distin-
guished. Raman sidescatter and backscatter can erode
the back of a long pulse, L��p, since energy is being
transported out of the pulse. This erosion has been ob-
served in fluid �Antonsen and Mora, 1993; Andreev et
al., 1995� and particle simulations �Bulanov et al., 1995;
Decker, Mori, Tzeng, et al., 1996�.

As the RBS mode grows to large amplitude, it can
trap the background plasma electrons, thus heating the
plasma and creating a fast tail on the electron distribu-
tion. The phase velocity of the RBS plasma wave is vp
=�e /ke=�p /2k0�c. Since vp /c�1, the plasma wave can
trap the background thermal electrons. The resulting
fast electrons can be subsequently trapped by Raman
scattered modes propagating at smaller angles �, which
will accelerate the electrons to higher energies �Joshi et
al., 1981; Bertrand et al., 1995; Esarey et al., 1998�. Even-
tually, these background electrons can be trapped and
accelerated to very high energies by the plasma wave
associated with the forward Raman instability or the
self-modulation instability, which has vp�c. This mecha-
nism may explain how background plasma electrons can
be trapped and accelerated to high energies, as is ob-
served in experiments �Coverdale et al., 1995; Nakajima
et al., 1995; Ting et al., 1997; Wagner et al., 1997; Gordon
et al., 1998; Gahn et al., 1999; Leemans et al., 2001;
Malka et al., 2001� and simulations �Bulanov et al., 1995;
Decker, Mori, Tzeng, et al., 1996� in the self-modulated
or forward Raman scattering regimes. For sufficiently
large relativistic plasma wave amplitudes, self-trapping
of background plasma electrons can also occur in the
absence of RBS �Modena et al., 1995�.

For high pump intensities �a0
�p /�0�, theory predicts
that stimulated backscattering occurs in the strongly
coupled or Compton regime �Leemans et al., 1991; An-
tonsen and Mora 1993; Sakharov and Kirsanov, 1994;
Everett, Lal, Gordon, et al., 1995; Shvets et al., 1997;
Schroeder, Esarey, Shadwick, and Leemans, 2003�, for
which ��!
�p and the number of e-folds is Ne

= ��3/2���p
2�0a0

2 /4�1/3 
� 
 /��. In addition, 1D nonlinear
theory predicts that for a linearly polarized pump laser
field, stimulated backscattered harmonic radiation can
be generated �Esarey and Sprangle, 1992� at frequencies
given approximately by �2�+1��0 �� is an integer�, i.e.,
odd harmonics. Although the growth rate for the higher
harmonics can be significant when a0

2
1, thermal ef-
fects, i.e., trapping of the background plasma electrons,
can severely limit the generation of higher harmonics
�Esarey and Sprangle, 1992�.

2. Raman forward scattering

In Raman forward scattering �RFS� �Kruer, 1988�, the
scattered waves propagate parallel �or nearly parallel� to
the pump wave, and the associated plasma wave has a



phase velocity vp�c. Hence, the plasma wave can be
used to accelerate electrons to high energies. The RFS
instability can serve as the basis for an LWFA �Tajima
and Dawson, 1979; Joshi et al., 1981; Esarey et al., 1996;
Mori et al., 1994�, in which a single long �L��p� laser
pulse becomes modulated via RFS and drives a large
amplitude plasma wave. An LWFA based on RFS can be
viewed as the 1D analog to the self-modulated LWFA.

The physical mechanism of RFS can be understood by
the following 1D description �Mori, 1997�. Consider a
long uniform laser pulse propagating in the presence of
an initially small amplitude plasma wave of the form
�n=�n0 sin kp� with �n0�0. Since the local group veloc-
ity vg is given by vg /c�1−�p

2��� /2�0
2, the local group

velocity decreases in regions where �n�0 and increases
in regions where �n�0. This tends to modulate the laser
pulse such that the intensity modulations are � /2 out of
phase with the density wave, i.e., a�a0+�a, where �a
=�a0 cos kp� and �a0�0. This intensity modulation
feeds back via ��2 /��2+kp

2��n /n0= ��2 /��2�a2 /2 and
drives the plasma wave to larger amplitudes, resulting in
the RFS instability.

Several regimes of the RFS can be identified �McKin-
strie and Bingham, 1992; Antonsen and Mori, 1993;
Decker, Mori, Katsouleas, et al., 1996; Schroeder, Es-
arey, Shadwick, and Leemans, 2003�, such as a four-wave
regime, in which both �0±�p modes are resonant, a
three-wave regime, in which only �0−�p is resonant
with the pump laser and the plasma wave, as well as an
intermediate four-wave nonresonant regime. The tem-
poral growth rate in the four-wave resonant regime is
!4=�p

2a0 /2�2�0, the temporal growth rate in the four-
wave nonresonant regime is !4nr=�3�p�a0�p

2 /4�0
2�2/3 /2,

and the temporal growth rate in the three-wave regime
is !3=�pa0��p /�0�1/2 /4. The spatiotemporal analysis
�Antonsen and Mora, 1993; Decker, Mori, Katsouleas, et
al., 1996; Schroeder, Esarey, Shadwick, and Leemans,
2003� indicates, however, that as the RFS instability
grows, it passes through these various regimes, depend-
ing on the relative value of 
� 
 /c	, where �=z−ct and
	= t are independent coordinates. The number of
e-foldings for these three RFS modes and the corre-
sponding spatiotemporal regimes are given by �Anton-
sen and Mora, 1993; Decker, Mori, Katsouleas, et al.,
1996; Schroeder, Esarey, Shadwick, and Leemans, 2003�

Ne � 2!4�
�
	/c�1/2 for a0
2 
�

c	


 2
�p

2

�0
2 , �103�

Ne �
3
2
!4nr�2
�
	2/c�1/3 for 8

�p
5

�0
5 �

a0
2

2


�

c	

�
�p

2

�0
2 ,
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Ne � 2!3�
�
	/c�1/2 for a0
2 
�

c	

� 16
�p

5

�0
5 , �105�

where a0
2�1 and �p

2 /�0
2�1 are assumed. A similar

analysis has been applied by Antonsen and Mora �1993�

to describe small angle RFS, the resulting growth rate is
proportional to !3, similar to Eq. �105�. Note that the
paraxial approximation to the wave operator ���

2

+2ik0� /�c	� is not sufficient to describe direct ��=0�
RFS; retention of the term 2�2 /���c	 is necessary to de-
scribe on-axis RFS. This was done in the fluid simulation
of the self-modulated LWFA presented in Sec. III.D, i.e.,
the effects of both the RFS and self-modulation insta-
bilities are present. A nonparaxial theory �Esarey et al.,
2000�, describing the coupling of RFS and self-
modulation instabilities, is discussed in the next section.

In addition, it is also possible for a RFS mode to un-
dergo multiple scattering, sometimes referred to as cas-
cading �Joshi et al., 1981; Gibbon and Bell, 1988�, result-
ing in multiple waves with frequencies �0±��p �� is an
integer�. It is possible to interpret this as photon accel-
eration, or phase modulation by the plasma wave, of the
scattered light wave �Mori et al., 1994�. Numerous high-
order Stokes and anti-Stokes lines have been observed
in simulations of RFS �Decker et al., 1994�. Multiple
�Coverdale et al., 1995; Moore et al., 1997; Wagner et al.,
1997� �up to the fifth �Modena et al., 1995�� anti-Stokes
lines have been observed in RFS or self-modulated
LWFA experiments.

B. Self-modulation and laser-hose instabilities

A formalism has been developed �Esarey et al., 1994,
2000; Sprangle et al., 1994� to describe the 3D evolution
of laser pulses in plasmas, including the effects of dif-
fraction, relativistic and channel guiding, finite pulse du-
ration, and coupling to the self-consistent plasma wave
generated by the pulse structure. This formalism has
been used to describe a class of “whole-beam” instabili-
ties, which includes self-modulation �Esarey et al., 1994;
Sprangle et al., 1994� and laser-hose �Sprangle et al.,
1994� instabilities. In this formalism, equations are de-
rived to describe the evolution of the local laser pulse
spot size xs�� , t� and the local laser pulse centroid xc�� , t�,
where the transverse profile of the laser field is assumed
to be a Gaussian of the form a�exp�−�x−xc�2 /xs

2� �the y
profile can be similarly defined�. The self-modulation in-
stability consists of a periodic “sausaging” of the laser
spot size xs and the laser hose consists of a periodic
“kinking” of the laser centroid xc, as show in Fig. 35. In

FIG. 35. Schematic of the hose-modulation instability showing
the laser pulse centroid xc and spot size xs. From Sprangle et
al., 1994.



their most basic forms, the self-modulation and laser-
hose instabilities are described by spot size and centroid
perturbations of the forms �xs,c�exp�!s,ct+ ikp��, i.e.,
having a period equal to the plasma wavelength �p

=2� /kp and a spatiotemporal growth rate !s,c=!s,c�� , t�.
Intrinsically, these instabilities involve a coupling to a
plasma wave, and the dynamics of the instabilities are
determined by the enhanced diffraction and focusing of
the laser pulse owing to the presence of the plasma
wave.

The physical mechanism underlying self-modulation
has been described in Sec. III.D. The physical mecha-
nism for laser hosing �Shvets and Wurtele, 1994;
Sprangle et al., 1994� is somewhat similar. Consider a
long, L��p, guided laser pulse P /Pc=1−n /nc, with a
centroid that is initially perturbed at the plasma wave-
length xc�xc0 sin�kp��. This periodic centroid displace-
ment will drive an asymmetric plasma wave. Notice that
for xc

2 /xs
2�1, the intensity profile is a2�a0

2�1
+4xxc /xs

2�exp�−2x2 /xs
2�. At a fixed x position above the

axis, x=x0, the laser intensity modulation has the form
a2�x0� /a0

2�1+4�x0xc0 /xs
2�sin�kp��, which drives a plasma

wave. At a fixed x position below the axis, x=−x0, the
laser intensity is similarly modulated but � out of phase
with respect to the x=x0 modulation. Hence, the plasma
wave driven below the axis is � out of phase with respect
to the plasma wave driven above the axis, i.e., an asym-
metric �with respect to x� plasma wave. Roughly speak-
ing, the plasma wave has the form �n�−�x /xs�cos�kp��.
The laser pulse will tend to focus into the regions of
reduced plasma density. For the asymmetric plasma
wave, the laser pulse evolves in such a way as to enhance
the initial centroid perturbation and the process pro-
ceeds in an unstable manner.

Equations describing the behavior of the spot size
xs�� ,	� and centroid xc�� ,	� can be derived by analyzing
the paraxial wave equation including the effects of a per-
formed parabolic density channel and the self-consistent
plasma response given by

�n

n0
= �

0

�

d�� cos�kp�� − ����
�

���

a2����
2

. �106�

In the limits a2�1 and kp
2r0

2
1, xs and xc obey equations
of the form �Sprangle et al., 1994�

� �2

�	̂2 +
n

nc
�x̂c = − 4kp�

0

�

d�� sin�kp��� − ���

��x̂c���� − x̂c����Fc���,��
P����

Pc
�107�

and

�2x̂s

�	̂2 − �1 −
x̂sP

ŷsPc
−

n

nc
x̂s

4�x̂s
−3

= 4x̂s�
0

�

d�� cos�kp��� − ���
�

���
Fs���,��

P����
Pc

� .

�108�

Also, ŷc and ŷs obey equations similar to Eqs. �107� and
�108�, respectively. In the above, x̂c=xc /r0, ŷc=yc /r0, x̂s

=xs /r0, ŷs=ys /r0, 	̂=c	 /ZR, ZR=kr0
2 /2 is the Rayleigh

length, nc= ��rer0
2�−1 is the critical channel depth,

P��� /Pc=a2xsyskp
2 /16 is the laser power normalized to

the critical power, and Fs,c��� ,�� are functions that de-
pend on xs, ys, xc, and yc and couple the spot size dy-
namics to the centroid dynamics �Sprangle et al., 1994�.

The right-hand side of Eq. �107� indicates that if
xc���=xc���� initially �i.e., a uniform centroid�, xc��� will
not increase. Hence, the laser-hose instability requires a
nonuniform head-to-tail centroid displacement
�Sprangle et al., 1994�, �xc /���0. The right-hand side of
Eq. �108� indicates that axial gradients in the laser power
�P /���0 will lead to modulations in the laser envelopes
�xs ,ys�, which can grow in an unstable manner as dis-
cussed in Sec. III.D. Both the self-modulation and laser-
hose instabilities can occur either in a uniform plasma
�n=0� or in a preformed density channel.

In the absence of a centroid perturbation, i.e., xc=0
�no hosing�, self-modulation is described by Eq. �108�.
For an axisymmetric pulse �xs=ys=rs�, Fs= �R2���
+R2�����−2 with R=rs /r0 �Esarey et al., 1994�. The sec-
ond, third, and fourth terms on the left-hand side of Eq.
�108� represent the effects of vacuum diffraction, relativ-
istic focusing, and channel focusing, respectively,
whereas the term on the right-hand side represents the
nonlinear coupling of the laser envelope to the plasma
wave. Equation �108� describes well-known laser pulse
evolution, such as the inability of relativistic guiding to
prevent the diffraction of short pulses L��p �Sprangle
et al., 1990a, 1990b, 1992; Ting et al., 1990�.

The evolution of a long axially uniform laser beam
can be examined in the limit where the effect of the
plasma wave is neglected, i.e., the nonlinear coupling
term on the right-hand side of Eq. �108� is set equal to
zero. This limit is discussed in Sec. V.C. In particular, a
matched beam with rs=ri=r0 requires P=PM, where
PM=Pc�1−n /nc� �Esarey et al., 1994�.

The effect of the plasma wave on the spot size evolu-
tion is described by the right-hand side of Eq. �108�. The
initial effect of the plasma wave can be estimated by
approximating R����=R��� within the integral in Eq.
�108�, i.e., initially the spot size is uniform throughout
the pulse. In this limit the right-hand side of Eq. �108�
can be written as �−�n /nc� / �2R3�, where �n is the ini-
tial density perturbation given by Eq. �106�. The rise
associated with the front of the pulse gives a nonzero
value of �a2 /�� that generates a finite amplitude density
wake. Throughout the body of a long flat-top pulse, this
density wake has the form �n=�n̂ cos�kp��. In particular,



for a flat-top pulse with a fast rise, kp
2Lrise

2 �1, Eq. �106�
yields �n /n0=−�a0

2 /2�cos�kp�� and the right-hand side
of Eq. �108� can be written as �−�n /2nc�R−3

=R−3�P /Pc�cos�kp��. Hence, at the phase regions where
cos�kp��=−1, focusing requires P�PM /2 �for kp

2Lrise
2


1, the initial wake �n vanishes and focusing requires
P�PM�. The effect of the initial density wake �n��� is to
produce �-periodic regions of enhanced focusing and dif-
fraction. This causes the laser intensity to become modu-
lated at �p, which subsequently enhances the density
wake at later times. This is the basis of the self-
modulation instability.

For sufficiently small perturbations, xs /r0�1 and
xc /r0�1, Eqs. �107� and �108� decouple and self-
modulation and the laser-hose instability can be ana-
lyzed independently. The growth of the instabilities for a
long �L
�p� optically guided �P=PM� laser pulse can be
analyzed by perturbing Eq. �108� about the matched-
beam equilibrium. Asymptotic growth rates can be ob-
tained in various regimes using standard methods. A
number of e-folds in the various regimes are given by
the following �Esarey et al., 1994; Sprangle et al., 1994�:

�i� Long pulse regime. kp
�
ZR /z
4$1Pc /P,

Ne =
3�3

4 �$2
P

Pc
kp
�


z2

ZR
2 �1/3

, �109�

�ii� Intermediate regime. �$3 /4�P /Pc�kp
�
ZR /z
�4$1Pc /P,

Ne = �$3
P

Pc
kp
�


z

ZR
�1/2

, �110�

�iii� Short pulse regime. kp
�
ZR /z� �$3 /4��P /Pc�,

Ne =
3�3

4
�$3

P

Pc
kp

2
�
2
z

ZR
�1/3

. �111�

For the laser-hose instability, $1=$2=$3=1. For self-
modulation, $1=�2�2−P /Pc�3/2 ��2�$1�4�, $2=2, and
$3=�2�2−P /Pc�−1/2 �1�$3��2�. Hence, the number of
e-folds is a function of the dimensionless parameters
P /Pc, kp
�
, and z /ZR, where z=c	 in the underdense
limit.

A nonparaxial theory of finite-radius pulses �Esarey et
al., 2000� can be used to describe the coupling of RFS
and self-modulation instabilities. Linearizing about a
matched, optically guided, laser yields the evolution of a
laser spot size perturbation �rs,

L1L2�rs = �i/2��kp/k�P̂2�rs, �112�

where L1=�
�̂ẑ

2
+ �kp /k�P̂= �ZR /kp����z

2 + �kp
4 /k2�a0

2 /8� and

L2= ��ẑ
2+$4

2���̂+ iP̂, with $4= �4−2P̂�1/2, P̂=P /Pc, ẑ

=z /ZR, and �̂=kp�. The conventional 1D RFS instability
is described by L1�rs=0, and the conventional 2D self-
modulational instability is described by L2�rs=0.
Asymptotic expressions for the number of e-folds Ne
have been obtained in the appropriate spatial-temporal
regimes. Two branches can be identified, and the cou-

pling term on the right-hand side of Eq. �112� yields
modified growth rates. For the self-modulational branch,

Ne= �2P̂
�̂
ẑ /$4�1/2 in the regime P̂ / �2$4�� 
�̂
 / ẑ�2$4
3 / P̂,

Ne= �33/2 /4��2P̂
�̂
ẑ2�1/3 in the regime $4
3 /2P̂� 
�̂
 / ẑ

� �2P̂�kp /k�3�−1, and Ne= �33/2 /4��P̂
�̂
ẑ2�1/3 in the regime

�k /kp�3 / P̂� 
�̂
 / ẑ. For the RFS branch, Ne

= �4�kp /k�P̂
�̂
ẑ�1/2 in the regimes �kp /k�P̂� 
�̂
 / ẑ

� �kp /k�$4
4 / P̂ and �k /kp�3 / P̂� 
�̂
 / ẑ and Ne

= �2�kp /k�P̂
�̂
ẑ�1/2 in the regime �kp /2k�$4
4 / P̂� 
�̂
 / ẑ

�8�k /kp�3 / P̂. Note that the self-modulational instability
dominates RFS in the above regimes �assuming $4kp /k

�1/2�, except when �k /kp�3 / P̂� 
�̂
 / ẑ; however, here
growth is significant only in the tail of a long pulse, i.e.,

kp�

 �2�kp /k�2P /Pc�−1.

To illustrate the behavior of the coupled self-
modulation and laser-hose instabilities, Eqs. �107� and
�108� are solved numerically �Sprangle et al., 1994�. Con-
sider an initially uniform plasma with a 16 TW, 1 ps la-
ser pulse with wavelength �=1 �m and initial spot size
r0=60 �m �ZR=1.1 cm� in a plasma of density n0=1.2
�1018 cm−3 ��p=30 �m�. For these parameters, P���
=Pc at the center of the pulse. Initially, x̂s= ŷs=1 and the
centroid has a 1% random perturbation such that

� ln xc /��
�1/�0.

As the laser propagates, the high-intensity center of
the pulse remains guided �x̂s�1�. However, the front
and back portions of the pulse, with P�Pc, diffract, and
the coupled hose and modulation instabilities grow
within the guided portion of the pulse as illustrated in
Figs. 36 and 37. Figure 36 shows the normalized laser
intensity on axis 
â
2=16P��� /Pcx̂sŷskp

2r0
2 at 	̂=0 and at

	̂=3.2. Figure 37 plots x̂s��� and x̂c��� at 	̂=3.2 and shows
a significant level of hosing, with 
x̂c
 as large as 0.5. In
addition to the modulation of the envelope at �p, the
second harmonic at �p /2 is present, indicating the cou-
pling between the hose and self-modulation instabilities.
The spatial modulation of the laser envelope at �p /2 is
due to the dependence of the driving terms on the cen-
troid motion. The second harmonic is not observed
when the initial centroid perturbation is sufficiently
small, 0.1% for the above parameters.

FIG. 36. Normalized laser intensity 
a
2 vs � /�p at c	=0
�dashed curve� and c	=3.2ZR �solid curve� for the parameters
�p=r0 /2=30 �m. Laser is moving to the right. From Sprangle
et al., 1994.



The presence of the laser-hose instability can strongly
modify the structure of the wakefield generated by the
laser pulse. To illustrate this point, consider an initial
centroid perturbation of 10% �Sprangle et al., 1994�.
Here the centroid motion dominates both the develop-
ment of the wakefield and the evolution of the envelope.
The spot size modulations are dominated by the second
harmonic component. Figure 38 shows the transverse
profiles of both the longitudinal and transverse wake-
fields, at 	̂=1.8, near the back of the pulse. The trans-
verse field Ex is nearly symmetric and peaked on axis
while the longitudinal field Ez is nearly antisymmetric
and vanishes on axis. This wakefield symmetry is oppo-
site to that which occurs without hosing, i.e., in the ab-
sence of the hose instability, Ex is antisymmetric and
vanishes on axis, while Ez is symmetric and peaked on
axis.

Although the modulation instability can enhance the
wakefield amplitude and acceleration in the LWFA, the
laser-hose instability should generally be avoided. To
avoid significant levels of hosing, the initial laser cen-
troid must be sufficiently smooth. Equations �109�–�111�
indicate that the growth of the hose instability can be
reduced by decreasing the pulse length �kp
�
�, the laser
power �P /Pc�, or the interaction distance �z /ZR�. Fur-
ther simulations �Sprangle et al., 1994� indicate that by
appropriately varying �i.e., detuning� either the plasma
density and/or the depth of the preformed plasma chan-
nel as a function of � in the laboratory frame, the laser-

hose and self-modulation instability can be substantially
reduced.

VII. HIGH-QUALITY BUNCH PRODUCTION

As described in the previous sections, a decade worth
�1994–2004� of experiments by many groups demon-
strated that, by focusing intense laser pulses onto a neu-
tral gas, relativistic electron bunches can be produced.
Typically, prior to 2004, the accelerated electron energy
spectrum was characterized by an exponential or
Boltzmann-like distribution, with the majority of elec-
trons at modest energies �a few MeV�. The total accel-
erated charge was large �up to several nC�, but the num-
ber of electrons at high energy �tens of MeV� was an
exponentially small fraction of the total charge. Figure
39 shows an example of a typical exponential energy
spectrum �Leemans et al., 2004�. Although the bunches
had large energy spread, they were typically well colli-
mated with divergences �10 mrad �Leemans et al.,
2004�. Furthermore, the normalized transverse emit-
tance was measured and shown to be a few �m rad at
55 MeV �Fritzler et al., 2004�. Over the years, the prop-
erties of these bunches improved. For example, higher
laser pulse energies led to more charge and higher ob-
served maximum electron energies �up to a few hundred
MeV� �Mangles et al., 2005�. Conversely, electron
bunches were produced with “smaller” lasers, capable of
operating at higher repetition rate �Malka et al., 2002�.
Laser pulse shape effects were studied �Leemans et al.,
2002; Schroeder, Esarey, Geddes, et al., 2003�, and appli-
cations were explored such as radio-isotope production
�Leemans et al., 2001; Santala et al., 2001; Ledingham et
al., 2003�, terahertz radiation generation �Leemans et al.,
2003; Schroeder et al., 2004; van Tilborg et al., 2006,
2007�, x-ray generation �Leemans et al., 2000, 2005;
Catravas et al., 2001; Esarey et al., 2002; Rousse et al.,
2004�, and ultrafast chemistry �employing the ultrafast
nature of the electron bunches� �Brozek-Pluskab et al.,

FIG. 37. Laser envelope xs �upper curve� and centroid xc
�lower curve� vs � /�p at c	=3.2ZR for an initial perturbation of
1% in xc. Perturbations grow at �p=r0 /2=30 �m. From
Sprangle et al., 1994.

FIG. 38. Transverse profiles of the axial wakefield Ez /E0 �solid
curve� and the transverse wakefield Ex /E0 �dashed curve� at
c	=1.8ZR and �=−18�p for a hose-dominated case. From
Sprangle et al., 1994.
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FIG. 39. Electron energy spectrum dN /dE measured using a
magnetic spectrometer obtained by scanning the current in the
magnet and measuring the intensity on a phosphor screen.
Each data point represents ten shots. The spectrum is well
approximated by a Boltzmann distribution with an effective
temperature of 4.6 MeV. From Leemans et al., 2004.



2005�. Although steady progress was made, the broad
electron beam energy distribution remained a major
limitation.

A. High-quality bunches at the 100 MeV level

In 2004 a major milestone was achieved with the pro-
duction and measurement of high-quality electron
bunches. Three different groups �located at the Ruther-
ford Appleton Laboratory �RAL� in the United King-
dom, Lawrence Berkeley National Laboratory �LBNL�
in the United States, and the Laboratoire d’Optique Ap-
pliquée �LOA� in France� announced measurement of
electron bunches with narrow energy spread containing
a significant amount of charge in a bunch with a small
divergence �Faure et al., 2004; Geddes et al., 2004;
Mangles et al., 2004�. In the case of the LBNL experi-
ments �Geddes et al., 2004�, this was accompanied by the
achievement of another major milestone: the guiding of
relativistically intense ��1018 W/cm2� laser pulses
within preformed plasma channels �Geddes et al., 2005a�
and the self-trapping and acceleration of electrons
within these channels �Geddes et al., 2005b�. Guiding of
high-intensity laser pulses in plasma channels is neces-
sary in order to extend the acceleration length and the
energy gain up to the multi-GeV range with reasonable
size laser systems that can operate at high repetition
rates. Following 2004, several additional research groups
�Hidding et al., 2006; Hosokai et al., 2006; Maksimchuk
et al., 2008; Osterhoff et al., 2008� have reported mo-
noenergetic beam production.

To obtain the monoenergetic bunches, the RAL and
LOA groups used relatively large laser spot sizes. This
effectively increases the diffraction �or Rayleigh range
ZR� of the laser pulse, thereby permitting propagation
over distances on the order of the gas jet length. The
RAL collaboration used a 0.5 J, 40 fs laser pulse focused
�25 �m spot diameter, 2.5�1018 W/cm2� on a plume of a
2 mm long gas jet with a plasma density of 2
�1019 cm−3. A narrow energy spread bunch was ob-
served at 78 MeV with 3% FWHM energy spread,
22 pC of charge, and a divergence �5° FWHM
�Mangles et al., 2004�.

The LOA experiments used a 1 J, 33 fs laser pulse
focused �21 �m FWHM diameter spot, 3.2
�1018 W/cm2� on a 3 mm gas jet with a plasma density
of 6�1018 cm−3. A narrow energy spread bunch was ob-
served at 170 MeV bunch with a 24% energy spread,
divergence of 10 mrad FWHM, and 500 pC of charge
�Faure et al., 2004�. Plasma density scans indicated that
there were optimal laser-plasma coupling parameters for
production of high-charge monoenergetic electron
beams, as predicted in the bubble regime and in agree-
ment with 3D PIC simulations �Faure et al., 2004; Malka
et al., 2005�.

The LBNL experiments used a 9 TW, 55 fs laser pulse
focused to a relatively tight spot size �8.5 �m FWHM,
1019 W/cm2�. To mitigate the short ZR of the laser pulse,
a preformed plasma channel �created using additional

laser pulses, with an on-axis density of 2�1019 cm−3�
was used to guide the laser pulse through the 2 mm gas
jet. With the preformed channels and laser input powers
at the 8–10 TW level, electron bunches with narrow en-
ergy spread were observed �Geddes et al., 2004�. At
9 TW, using the 55° fine resolution magnetic spectrom-
eter, bunches containing 2�109 electrons at 86 MeV
with a 3.6 MeV FWHM energy spread were observed
with a divergence near 3 mrad �see Fig. 40�. Bunches
containing 109 electrons at energies between 135 and
170 MeV were observed using the 5° port of the mag-
netic spectrometer. The normalized transverse emit-
tance, estimated from assuming that the bunch comes
from a source approximately the size of the laser spot, is
�1–2�� mm mrad, comparable to conventional radio-
frequency sources.

Based on experiment, simulation, and theory, the pro-
duction of monoenergetic bunches in an LPA requires
the following four steps. Step 1 consists of exciting a
wakefield. For a self-modulated LWFA, this typically oc-
curs after the laser has propagated a sufficiently long
distance within the plasma, such that the self-
modulation instability �i.e., the feedback of the wake on
the pulse and the self-consistent evolution of both the
wake and the pulse� excites a large amplitude wakefield.
Eventually, the laser pulse self-steepening and self-
shortening can lead to a wake in the blow-out regime.
Step 2 consists of a method for trapping and the initial
injection of electrons into the wake. For a self-
modulated LWFA, this can be the result of wake ampli-
tudes approaching the wave breaking limit �i.e., suffi-
ciently large plasma wave amplitude for self-trapping of
background electrons�. Step 3 consists of termination of
the self-trapping or injection process. If trapping is not
terminated, low energy electrons would continuously be
injected into the wake over the entire length of accelera-
tion, resulting in a large energy spread. One mechanism
to accomplish this is by beam loading, i.e., the injected
electron bunch is of sufficient charge so as to reduce the
amplitude of the wake below the self-trapping threshold.

FIG. 40. �Color� Electron energy spectrum of a bunch pro-
duced by the channel-guided LWFA. The single-shot spectrum
was obtained by dispersing the electron beam with a magnetic
spectrometer and a charge-coupled device �CCD� imaged
phosphor screen. Beam contains 2�109 electrons with energy
spread of 3.6 MeV FWHM at 86 MeV. In the vertical �nondis-
persive� plane, the divergence was near 3 mrad FWHM for this
bunch. From Geddes et al., 2004.



Step 4 is acceleration of the electron bunch over a dis-
tance equal to the dephasing length. If acceleration oc-
curs over distances longer than the dephasing length, the
trapped bunch will continue to circulate around the
separatrix, losing energy and increasing its energy
spread. Optimum acceleration would occur over a dis-
tance equal to the dephasing length, such that the
trapped bunch exits the plasma near the top of the sepa-
ratrix �i.e., the accelerating phase-space bucket�, with
maximum energy and minimum energy spread.

Simulations, using the PIC code VORPAL �Nieter and
Cary, 2004�, were performed in parameter regimes rel-
evant to the LBNL experiments �Geddes et al., 2004�.
The simulated laser envelope and particle phase space
as a function of propagation distance are shown in Fig.
41, and the wake density is shown in Fig. 42. In these
simulations �Geddes et al., 2005b�, it is observed that in
the first few hundred microns of propagation of the laser
pulse in the channel, the wake amplitudes �and hence
the amount of trapped particles� are small. As the laser
pulse envelope starts distorting through the self-
modulation instability, developing features that have rise
times on the order of or shorter than the plasma period,
a highly nonlinear bubblelike plasma wake is excited
that self-traps and accelerates particles. Once enough
charge is accumulated in the accelerating bucket, the in-
jection process is terminated due to beam loading, i.e.,
the field of the accelerated bunch modifies the wakefield
and reduces its amplitude to below the trapping thresh-
old. Pump depletion of the laser pulse energy �lost to
wake excitation� also reduces the wake amplitude. If the
trapped electrons propagate beyond a dephasing dis-

tance, the electrons lose energy, which leads to a broad
energy distribution.

B. High-quality bunches at the 1 GeV level

In 2006, high-quality electron bunches at the 1 GeV
level were demonstrated in channel-guided LWFA ex-
periments at LBNL �Leemans, Nagler, et al., 2006; Na-
kamura et al., 2007�. In these experiments, the energy
gain was extended to the GeV range using higher laser
powers �e.g., 40 TW�, using longer plasma channels �e.g.,
3.3 cm�, and using lower plasma densities �e.g.,
1018 cm−3� so as to extend the dephasing length. Previ-
ous LBNL experiments at the 100 MeV level created
plasma channels in a gas jet with a laser ionization and
heating technique �Volfbeyn et al., 1999; Geddes et al.,
2004, 2005b�. Due to laser heating being inefficient at
low densities, suitable plasma channels could only be
produced in gas jets at densities �1019 cm−3, limiting the
dephasing length and restricting electron energies to
about 100 MeV.

To overcome the limitations of gas jets, a gas-filled
capillary discharge waveguide �Spence and Hooker,
2000; Butler et al., 2002� was used to produce centimeter
scale lower density plasma channels. The experiments
used a 10 Hz repetition rate Ti:sapphire laser system
��=810 nm� delivering down to 40 fs FWHM pulses
with up to 40 TW peak power. These pulses were fo-
cused by a 2 m focal length off-axis parabola �f /25� to
rs=25 �m at the capillary entrance �an input intensity
�1018 W/cm2�. The capillaries �Spence and Hooker,
2000� were laser machined into 33 mm long sapphire
blocks with diameters ranging from 190 to 310 �m. Hy-
drogen gas, introduced through two holes near the cap-
illary ends, was ionized by striking a discharge between

(a)

(c)

(b)

(d)

FIG. 41. �Color online� PIC simulation showing momentum
phase space �top of each panel� and laser envelope �bottom of
each panel� as a function of propagation distance. �a� The laser
enters the plasma and �b� is modulated by the plasma re-
sponse, exciting a wake and trapping electrons. Beam loading
terminates trapping. �c� The trapped electrons are concen-
trated in energy at the dephasing length, forming a high-energy
low-energy spread bunch, which �d� dissipates with further
propagation. From Geddes et al., 2005b.

FIG. 42. �Color� PIC simulation of electron density after laser
propagation of �a� 875 �m and �b� 1117 �m. �a� The density
perturbation just prior to self-trapping in the first bucket be-
hind the laser. �b� A trapped electron bunch is damping the
wake and suppressing further trapping, isolating the initial
bunch in phase space. From Geddes et al., 2005b.



electrodes at the capillary ends, producing an approxi-
mately parabolic plasma channel. Accelerator perfor-
mance was optimized by adjusting the initial gas density
and the delay between onset of the discharge current
and arrival of the laser pulse �from 1.0�1018 to 4.0
�1018 cm−3 in an �100 ns timing window�. Electron
bunch energy was measured by a 1.2 T single-shot mag-
netic spectrometer that deflected the electrons onto a
1.2 m long phosphor screen, covering energies from 0.03
up to 1.1 GeV.

Figure 43 shows energy spectra of electron bunches
produced at �a� 0.5 GeV with �50 pC charge and at �b�
1.0 GeV with �30 pC charge, obtained using 12 TW
�73 fs input� and 40 TW �38 fs input� laser pulses, re-
spectively. In both cases the electron bunches had
percent-level energy spread and an rms divergence of
1.2–2.0 mrad.

Bunches at �0.5 GeV were obtained using a 225 �m
diameter capillary for a density of �3.2–3.8��1018 cm−3

and for laser power ranging from 12 TW
�73 fs� to 18 TW �40 fs�. The performance for the
225 �m diameter capillary-guided accelerator was found
to be reproducible for delays of 80–110 ns and 12 TW
laser peak power, with every laser shot resulting in an
electron bunch at 0.48 GeV ±6% and an rms spread
�5%. Fluctuations in electron bunch energy were di-
rectly correlated with those in laser power. For lower
power ��12 TW�, no electron bunches were observed
suggesting that the wake amplitude was below the self-
trapping threshold.

The GeV electron bunch was obtained in a 310 �m
diameter channel capillary for P=40 TW and a density
of 4.3�1018 cm−3. In this larger diameter channel, trans-
verse wakefields are reduced but the guiding properties
are less ideal, as it requires a larger matched spot size

than was injected. For lower laser power ��38 TW�, no
electron bunches were observed. For higher laser pow-
ers, the spectrum always showed structure with signifi-
cant shot-to-shot fluctuations due in part to the self-
trapping mechanism being sensitive to small variations
in the laser and plasma parameters �Nakamura et al.,
2007�.

PIC simulations in two and three dimensions confirm
that the injection and acceleration mechanism is similar
to that which occurs in the gas jet experiments at the
100 MeV level. The initial profile of the laser pulse in-
jected into the channel produces a wake with an ampli-
tude that is too low to produce self-trapping. Over the
first few millimeters of propagation, the plasma wake
feedbacks on the laser pulse, leading to self-modulation
and self-steepening, which further increases the wake
amplitude. A blow-out or cavitated wake is eventually
produced of sufficient amplitude so as to allow self-
trapping. Trapping continues until there is sufficient
trapped charge to beam load the wake, reducing its am-
plitude and terminating the self-trapping process. Over
the next �1 cm of propagation, the bunch accelerates as
the laser energy depletes. Laser depletion occurs after
approximately a dephasing length, resulting in the pro-
duction of narrow energy spread electron bunch with an
energy near 1 GeV.

Using a similar experimental setup as described
above, experiments �Karsch et al., 2007� at the Max-
Planck-Institut für Quantenoptik have demonstrated
quasimonoenergetic electron beams as high as 500 MeV
by focusing a 750 mJ, 42 fs laser pulse into a gas-filled
capillary discharge waveguide �plasma density of
1018–1019 cm−3�. Additional experiments with capillary
discharge waveguides suggest that in certain operating
regimes electron self-trapping may be assisted by laser
ionization of atoms or ions within the capillary
�Rowlands-Rees et al., 2008�.

C. High-quality bunches from colliding pulse injection

In addition to stable electron bunches generated at
the 0.5 GeV level via self-trapping in the channel-guided
LWFA experiments described in the previous section,
stable electron bunches at the 100 MeV level were also
generated in 2006 by colliding pulse injection within a
gas jet in experiments at LOA �Faure, Rechatin, et al.,
2006�. These experiments used a two pulse, collinear,
counterpropagating geometry, in which injection results
from the beat wave produced when the backward pulse
overlaps the forward drive pulse that generates the
wakefield �Fubiani et al., 2004; Kotaki et al., 2004�. Spe-
cifically, two 30 fs laser pulses with linear polarization
were focussed at the edge of a 2 mm supersonic helium
gas jet. The pump pulse was focused to an intensity of
I0=3.4�1018 W/cm2 �720 mJ, 20 �m FWHM spot, a0
=1.3� and the injection pulse intensity was I1=4.3
�1017 W/cm2 �250 mJ, 31 �m FWHM spot, a1=0.4�.
The electron bunch was passed through an electron
spectrometer, which measured the electron bunch angu-
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FIG. 43. �Color� Single-shot electron bunch spectra of the
capillary-guided LWFA �Leemans, Nagler, et al., 2006; Naka-
mura et al., 2007�. Examples are shown of bunches at �a�
0.50−0.015

+0.02 GeV �5.6% rms energy spread, 2.0 mrad divergence
rms, �50 pC charge� and �b� 1.0−0.05

+0.08 GeV �2.5% rms energy
spread, 1.6 mrad divergence rms, �30 pC�. The 0.5 GeV
�1.0 GeV� bunch was obtained in a 225 �310� �m capillary with
a density of 3.5�1018 �4.3�1018� cm−3 and input laser power
of 12 TW �40 TW�. The black stripe denotes the energy range
not measured by the spectrometer. In �b� a second bunch at
0.8 GeV is also visible.



lar distribution, energy distribution, and charge.
For plasma densities at or below 7.5�1018 cm−3, the

nonlinear evolution of the pump laser pulse through
self-focusing and self-steepening was not strong enough
to cause significant injection of electrons into the wake-
field. However, at a density of 7.5�1018 cm−3, the addi-
tion of the injection pulse produced a monoenergetic
electron bunch. The electron bunches obtained in this
manner were stable: A series of 20 consecutive shots was
carried out to estimate the statistical fluctuations of the
bunch, giving a peak energy of 117±7 MeV, a FWHM
energy spread of �11±2�%, a charge of 19±6.8 pC, a
divergence of 5.8±2 mrad, and a pointing stability of
0±1.8 mrad �here the � signifies the standard deviation
about the mean�. By varying the delay between the two
pulses, the collision point, and hence the acceleration
length, within the gas jet was varied. This allowed the
electron bunch energy to be tuned from 50 �with 25%
energy spread� to 250 MeV �with 5% energy spread�.
Furthermore, when the polarizations of the two laser
pulses were orthogonal, no electron bunch was pro-
duced, which suggests that the injection mechanism de-
pends on parallel polarization and the production of a
beat wave.

Stable high-quality electron beam generation was also
achieved by colliding a drive pulse with a counterpropa-
gating pulse at 135° �Kotaki et al., 2008�. In this experi-
ment a 0.2 J, 70 fs drive laser interacts with a 10 mJ,
70 fs injection laser �propagating at an angle of 135° with
respect to the drive laser� in a 3.95�1019 cm−3 plasma to
produce 14±0.7 MeV electron beams containing
22±3.8 pC of charge and �11±1.5�% of energy spread.

D. High-quality bunches from density transitions

Stable electron bunches at the 1 MeV level have been
demonstrated experimentally at LBNL by focusing a
10 TW, 47 fs laser �2�1019 W/cm2, 7.5 �m FWHM
spot� on the downstream edge of a 750 �m wide gas jet
of density 2.2�1019 cm−3 �Geddes et al., 2008�. The
mechanism for self-trapping of electrons from the back-
ground plasma is the presence of a negative plasma den-
sity gradient �Bulanov et al. 1998�, as discussed in Sec.
IV.D. At the downstream edge of the gas jet, a decreas-
ing plasma density causes �p to increase with propaga-
tion. Plasma wave fronts then fall further behind the
laser as it propagates, decreasing the wake phase veloc-
ity to the point where background plasma electrons be-
come trapped.

Using this method, stable �over hundreds of shots�
electron bunches were produced with low absolute mo-
mentum spread. Electron bunches were generated with
order 0.5 nC charge �15% charge stability�, 0.76 MeV/c
mean momenta with 20 keV/c rms momentum stability,
170 keV/c FWHM longitudinal momentum spread,
20 keV/c transverse momentum spread, and 2 mrad
�2 keV/c� rms pointing stability. Examples of the mo-
mentum distribution of the bunch as obtained from a
magnetic spectrometer are shown in Fig. 44. Further-

more, measurements of coherent terahertz emission im-
ply a bunch duration on the order of 100 fs.

One possible application of such a source would be as
an electron injector into a second stage �dark current
free� of an LWFA for acceleration to high energy. Simu-
lations predict that postacceleration of a highly quality
bunch can nearly preserve the absolute momentum
spread and emittance �Tomassini et al., 2003�. Hence,
postacceleration of bunches produced by density transi-
tions could potentially lead to the generation of electron
bunches at GeV �or greater� energies with 100 keV/c
level momentum spread.

VIII. CONCLUSIONS

Perhaps the three most fundamental physics issues
concerning LPAs are �i� can an ultrahigh accelerating
field be generated, �ii� can this accelerating field be sus-
tained over a sufficiently long propagation distance so as
to provide a substantial single-stage electron energy
gain, and �iii� can an ultrashort electron bunch be in-
jected and accelerated while maintaining high bunch
quality? Theory and simulation indicate that these re-
quirements can be met. Experimental progress is pro-
ceeding at a rapid pace, and the generation of ultrahigh
accelerating fields, the guiding of high-intensity laser
pulses over many diffraction �Rayleigh� lengths, and the
production of high-quality relativistic electron bunches
have been demonstrated. Much of the experimental suc-
cess can be attributed to the development of chirped-
pulse amplification �Strickland and Mourou, 1985;
Maine et al., 1988; Mourou and Umstadter, 1992; Perry
and Mourou, 1994�, which has revolutionized laser tech-
nology by providing compact sources of 1–100 TW,
10–100 fs laser pulses. Numerous accelerator applica-
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FIG. 44. �Color� Momentum distributions obtained from a
magnetic spectrometer for electron bunches produced by a la-
ser focused at the downstream edge of a gas jet, showing stable
bunches at 0.76 MeV/c with ±10% momentum spread and
±3% momentum stability. Sequential single shot images are
shown on the left with the centroid �*� indicated with respect
to the average �square� over 45 shots. Integrated magnetic
spectrum is shown on the right �vertical bar denotes the rms
charge error� with the data points �blue� connected by a black
line. From Geddes et al., 2008.



tions will benefit from high-average power sources of
intense laser pulses, which require further technological
advances.

The problem of generating a large amplitude plasma
wave by an intense laser pulse, for the most part, is well
understood. Theoretically, wakefield generation can be
examined by assuming a nonevolving drive laser pulse
and by calculating the plasma response to the pondero-
motive force. This ponderomotive force can be associ-
ated with the envelope of a single laser pulse �e.g., a
standard LWFA in the linear regime or a bubble wake in
the highly nonlinear regime�, a laser pulse train, enve-
lope variations in an unstable laser pulse �e.g., self-
modulated LWFA�, or the beat wave produced by two
copropagating laser pulses of different frequencies �e.g.,
PBWA�. Wakefield generation is optimized when the la-
ser envelope spatial gradients are on the order of the
plasma wavelength �p. Analytical solutions or simple nu-
merical models exist in the 3D linear regime �a0

2�1� and
in the 1D nonlinear �a2�1� regime. In the 3D nonlinear
regime, wakefield generation can be examined with a
variety of fluid and particle codes. Unresolved theoreti-
cal issues pertaining to wakefield generation include the
detailed study of wave breaking in three dimensions, dy-
namics of the highly nonlinear blow-out regime, wake-
field excitation and evolution in nonuniform plasmas,
and electron self-trapping.

Laser pulse propagation in underdense plasma is af-
fected by a variety of phenomena, including relativistic
self-focusing, ponderomotive self-channeling, preformed
density channels, plasma wave generation, pump deple-
tion, and laser-plasma instabilities, as discussed in Secs.
V and VI. In terms of fundamental limits to the energy
gain in a single-stage LWFA, the most severe is typically
diffraction, i.e., the Rayleigh length is usually much
shorter than the dephasing length and pump depletion
length. Hence, some form of optical guiding is required.
Relativistic self-guiding, which occurs when P%Pc

�17�p
2 /�2 GW, strongly affects the body of a long �L

��p� laser pulse. The leading portion of the pulse
���p�, however, will diffractively erode due to the self-
consistent response of the plasma density to the laser
field. The self-focusing of a laser pulse can be enhanced
by the ponderomotive blowout of the plasma electrons
from the axis, i.e., electron cavitation. In addition, the
body of long relativistically guided pulse is subject to
instabilities �Raman scattering, self-modulation, and la-
ser hosing�. Preformed plasma density channels are ef-
fective in the guiding of short �L��p� laser pulses when
n%nc=1/�rer0

2. For long pulses �L��p�, relativistic
effects can reduce this criterion, i.e., n /nc%1−P /Pc.
In addition, if the pulse is sufficiently short �L��p�, the
detrimental effects of various instabilities may be re-
duced, owing to the reduced growth of the unstable
mode within the pulse.

Once diffraction is overcome and the laser pulse is
guided by, for example, a plasma density channel, the
propagation distance will be limited by a variety of non-
linear phenomena. For example, a laser pulse on the

order of, or longer than, a plasma wavelength will un-
dergo self-modulation, generally defined as the pulse
evolution resulting from the feedback of the plasma
wave �wakefield� on the laser pulse. For a long laser
pulses, L
�p, self-modulation can lead to an unstable
axial modulation of the pulse profile at �p, with the as-
sociated excitation of a large wakefield that can grow to
the point of wave breaking, resulting in electron self-
trapping and acceleration. For shorter pulses, L��p,
self-modulation can still play a dramatic role via pulse
shortening and self-steepening. For example, as a pulse
with L��p enters a plasma, the initial intensity profile
may only drive a mildly nonlinear wake, but as this wake
feed backs on the laser pulse, the intensity profile short-
ens and steepens, which can result in a highly nonlinear
wake and the self-trapping of electrons. Hence, self-
shortening and self-steeping can play an important role
in the transition of a mildly nonlinear wake to a highly
nonlinear blow-out regime. Furthermore, the physics of
self-modulation is intrinsically coupled to that of pump
depletion since as the laser pulse excites the plasma
wave, it loses energy. Analytic studies of laser pulse evo-
lution, for the most part, are limited to the linear regime
in which, for example, analytic expressions for instability
growth rates are readily obtained. The self-consistent
problem of plasma wave generation by an evolving drive
laser pulse is typically of sufficient complexity as to re-
quire numerical simulation. Self-consistent simulations
of LPAs have been performed in the 2D and 3D nonlin-
ear regimes using both fluid and PIC codes.

To generate a high-quality electron bunch, it is highly
desirable that a bunch be injected with a length short
compared to �p. Due to the shortness of �p
��100 �m�, this is not yet achievable using conventional
photoinjectors, in which the production of femtosecond
bunches is problematic. Alternatively, several novel
laser-based methods for injecting electrons into a plasma
wave have been proposed and studied. This includes
self-trapping of background plasma electrons, which can
occur as the plasma wave amplitude approaches the
wave breaking amplitude for both long laser pulses, such
as in the self-modulated regime, or for short laser pulses,
as in the blow-out regime. In a plasma channel, curva-
ture of the plasma wave fronts becomes more severe
with distance behind the laser pulse and can lead to
wave breaking. A density down ramp causes the phase
velocity of the plasma wave to decrease, which can lead
to self-trapping at a sufficiently far distance behind the
pump laser pulse. Instead of relying on self-trapping,
one or more additional ultrashort �short compared to �p�
laser pulses can be used to inject electrons directly into
the wakefield. This can be done using either the pon-
deromotive force of the injection pulse or the slow beat
wave generated by two counterpropagating laser pulses.
These laser injection methods show great promise since
the injection process can be controlled in detail by ad-
justing the timing of the injection pulses with respect to
the plasma wave phase, as well as by adjusting the injec-
tion pulse amplitude and duration. Once injected, it is
important that the electron bunch be accelerated while



maintaining high quality, for example, maintaining a
small energy spread and emittance. This may require
controlling the transverse focusing forces of the wake-
field by, for example, tailoring the transverse plasma
density profile and/or the transverse laser intensity pro-
file.

Experimentally, many groups have measured ultra-
high accelerating fields and accelerated electrons. Large
accelerating fields ��200 GV/m� have been measured
directly from optical probing techniques or inferred
from the measurement of accelerated electrons. Large
amounts of self-trapped electrons �up to several nano-
coulambs� have been accelerated in the self-modulated
LWFA regime, with maximum electron energies up to a
few hundred MeV. Prior to 2004, however, the electron
energy spectrum in the self-modulated regime was typi-
cally characterized by an exponential distribution with
the majority of the electrons at low energy ��MeV� and
a long tail extending out to high energies, e.g.,
�300 MeV when using PW-level Nd:glass laser system
and a 2 mm diameter gas jet �Mangles et al., 2005�. Such
an exponential energy distribution of accelerated elec-
trons is typical of this first-generation of “brute force”
experiments, in which a single high power �greater than
few terawatts� laser pulse interacts with a gas jet plume
of a couple of millimeter diameter and of relatively high
density ��1019 cm−3�.

Two important experimental milestones toward the
development of LPAs were achieved in 2004, guiding of
relativistically intense �a0

2�1� laser pulses over many
diffraction lengths �Geddes et al., 2004� and the produc-
tion of high-quality electron bunches at relativistic ener-
gies ��100 MeV�, with high charge �up to 0.5 nC�, low-
energy spread �few percent�, and small divergence �few
milliradians� �Faure et al., 2004; Geddes et al., 2004;
Mangles et al., 2004�. These results were obtained by a
careful choice of laser and plasma parameters and/or a
tailoring of the plasma density profile. In these experi-
ments the electrons were self-trapped by the
10–100 TW laser pulse from the background plasma us-
ing millimeter-scale gas jet sources. High-quality
bunches were obtained by controlling the acceleration
length so that it was equal to the dephasing length.
Matching of the acceleration length and the dephasing
length was accomplished either by using a preformed
plasma channel �Geddes et al., 2004� or by using higher
power laser pulses with larger laser spot sizes �which
increases the propagation length� �Faure et al., 2004;
Mangles et al., 2004� along with lower plasma densities
�which increases the dephasing length�.

In 2006, high-quality electron bunches were produced
at the 1 GeV level using 100 TW class laser pulses in a
centimeter-scale plasma channel. Again, the electrons
were self-trapped from the background plasma �a gas-
filled discharge capillary�, and high-quality bunches were
obtained by acceleration over a dephasing length �Lee-
mans, Nagler, et al., 2006�. A capillary discharge plasma
channel enabled operation at lower plasma densities and
longer plasma lengths, thus allowing higher electron en-
ergies. Another important experimental milestone

achieved in 2006 was demonstration of controlled injec-
tion and acceleration of electrons using the colliding
pulse method �Faure, Rechatin, et al., 2006�. High-
quality electron bunches at the 100 MeV level were gen-
erated with multi-10 TW laser pulses in a millimeter-
scale gas jet using a two pulse, collinear,
counterpropagating geometry. Production of stable elec-
tron bunches at the 1 MeV level using a plasma density
transition has also been demonstrated �Geddes et al.,
2008�.

Although not the focus of this review, an experimental
milestone in the field of electron beam-driven plasma-
based accelerators was achieved in 2007 �Blumenfeld et
al., 2007�: the energy doubling of a fraction of electrons
in a multi-10 GeV electron bunch using a meter-scale
plasma. These experiments used the 50 fs, 42 GeV elec-
tron bunches from the 3 km long linear accelerator at
the Stanford Linear Accelerator Center, propagating
through a 85 cm plasma. In these single-bunch experi-
ments, the front portion of the electron bunch generated
a large amplitude plasma wakefield, which subsequently
accelerated a fraction of electrons in the tail of the
bunch to energies as high as 85 GeV. The majority of
the bunch electrons lost energy, which represents the en-
ergy needed to drive the plasma wave.

Although much progress has been made, in many re-
spects LPA experiments are still in their infancy. One
important challenge is to stabilize the performance of
the accelerator. Since the electron energy depends lin-
early on laser intensity in the linear wakefield regime
�see, e.g., Eq. �56��, stable electron bunch energies to the
few percent level requires control of the laser pulse en-
ergy, pulse length, and spot size at the few percent level.
Novel methods for controlling laser pulse properties and
pointing stability are being developed in industry for
short pulse systems that may meet these requirements.
Similarly, plasma densities must be controlled at the per-
cent level to ensure that the wake amplitude ��n1/2�,
dephasing length ��n−3/2�, and energy gain ��1/n� re-
main constant. Novel time-resolved diagnostics need to
be developed and implemented to allow, for example,
measurement of the slice emittance and energy spread
of femtosecond-duration electron bunches.

Perhaps the most severe fundamental limit to the
single-stage energy gain in an LPA is pump depletion,
i.e., energy is transferred out of the laser pulse and into
the plasma wakefield as the laser propagates. In the non-
linear regime, theory and simulation indicate that the
pump depletion length is on the order of the dephasing
length. To extend the electron energy beyond the limits
of pump depletion will require multiple stages. This re-
quires additional challenges such as the synchronization
of laser pulses with femtosecond accuracy, the alignment
of plasma structures with micron accuracy, and the de-
velopment of novel methods of laser coupling into sub-
sequent stages.

One possible approach to the realization of an all-
optical accelerator at the 10 GeV level is to use two
stages. The first could be an injector at the 100 MeV
level that utilized either self-trapping or a laser triggered



injection method such as colliding pulse. This electron
bunch could then be injected into a second stage that
would accelerate the bunch through a plasma channel in
a mildly nonlinear wakefield regime without additional
self-trapping �dark current free�. Estimates based on lin-
ear wakefield theory predict a single-stage energy gain
on the order of W�GeV��I0�W/cm2� /n0�cm−3�.
Hence, a second stage that used a few hundred femto-
second laser pulse with an intensity of 1018 W/cm2 in a
plasma of density 1017 cm−3 may provide a single-stage
energy gain as high as 10 GeV. As can be seen from the
basic scaling laws, reducing the density and lengthening
the distance over which the plasma channel extends are
essential to reach multi-GeV energies. Various numeri-
cal studies indicate that multi-GeV beams should be ob-
tainable with laser powers in the range of 0.1–1 PW
�Gordienko and Pukhov, 2005; Lifschitz et al., 2005;
Kalmykov et al., 2006; Malka et al., 2006; Lu et al., 2007;
Cormier-Michel et al., 2009�, where higher-energy gains
can be achieved for a given laser power by the use of
plasma channel guiding �Lu et al., 2007; Cormier-Michel
et al., 2009�.

The performance of LPAs, as well as essentially all
applications of these accelerators, would benefit greatly
from improvements in laser technology: higher peak
powers, higher pulse energies, higher repetition rates,
and the development of higher average power laser sys-
tems. Currently, 100 TW laser systems are limited to the
10 Hz regime �average powers on the order of 10 W�. As
a simple estimate of the type of laser pulses needed to
drive a high-charge single-stage accelerator, consider
producing a 10 GeV electron bunch containing 1 nC of
charge. This represents 10 J worth of electron kinetic
energy and, assuming a laser to particle beam efficiency
between 1% and 10%, requires therefore 100–1000 J of
laser energy per pulse. Hence, it is essential that plasma
accelerator technology and laser technology be devel-
oped in parallel if the goal of all-optical accelerators is
to be realized. Such an accelerator holds the promise of
offering unique electron bunches, having femtosecond
duration and containing hundreds of picocoulomb of
charge, with an emittance that equals or surpasses con-
ventional linacs. If the development continues to be suc-
cessful, LPAs will serve as compact multi-GeV modules
for high-energy physics applications, as well as drivers
for novel radiation sources, including the next genera-
tion of femtosecond light sources.
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